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Introduction to the First Edition

the element of play, which makes recreational mathematics recre-
ational, may take many forms: a puzzle to be solved, a competi-
tive game, a magic trick, paradox, fallacy, or simply mathematics
with any sort of curious or amusing fillip. Are these examples of
pure or applied mathematics? It is hard to say. In one sense recre-
ational mathematics is pure mathematics, uncontaminated by util-
ity. In another sense it is applied mathematics, for it meets the uni-
versal human need for play.

Perhaps this need for play is behind even pure mathematics.
There is not much difference between the delight a novice experi-
ences in cracking a clever brain teaser and the delight a mathemati-
cian experiences in mastering a more advanced problem. Both look
on beauty bare – that clean, sharply defined, mysterious, entranc-
ing order that underlies all structure. It is not surprising, therefore,
that it is often difficult to distinguish pure from recreational math-
ematics. The four-color map theorem, for example, is an important
theorem in topology, yet discussions of the theorem will be found in
many recreational volumes. No one can deny that paper flexagons,
the subject of this book’s opening chapter, are enormously enter-
taining toys; yet an analysis of their structure takes one quickly into
advanced group theory, and articles on flexagons have appeared in
technical mathematical journals.

Creative mathematicians are seldom ashamed of their interest in
recreational mathematics. Topology had its origin in Euler’s anal-
ysis of a puzzle about crossing bridges. Leibniz devoted consider-
able time to the study of a peg-jumping puzzle that recently enjoyed
its latest revival under the trade name of Test Your High-Q. David

ix



x Introduction to the First Edition

Hilbert, the great German mathematician, proved one of the basic
theorems in the field of dissection puzzles. Alan Turing, a pioneer
in modern computer theory, discussed Sam Loyd’s 15-puzzle (here
described in Chapter 9) in an article on solvable and unsolvable
problems. I have been told by Piet Hein (whose game of Hex is the
subject of Chapter 8) that when he visited Albert Einstein he found
a section of Einstein’s bookshelf devoted to books on recreational
mathematics. The interest of those great minds in mathematical
play is not hard to understand, for the creative thought bestowed
on such trivial topics is of a piece with the type of thinking that
leads to mathematical and scientific discovery. What is mathemat-
ics, after all, except the solving of puzzles? And what is science if it
is not a systematic effort to get better and better answers to puzzles
posed by nature?

The pedagogic value of recreational mathematics is now widely
recognized. One finds an increasing emphasis on it in magazines
published for mathematics teachers, and in the newer textbooks,
especially those written from the “modern” point of view. Introduc-
tion to Finite Mathematics, for example, by J. G. Kemeny, J. Laurie
Snell, and Gerald L. Thompson, is livened by much recreational
material. These items hook a student’s interest as little else can. The
high school mathematics teacher who reprimands two students for
playing a surreptitious game of ticktacktoe instead of listening to
the lecture might well pause and ask: “Is this game more interesting
mathematically to these students than what I am telling them?” In
fact, a classroom discussion of ticktacktoe is not a bad introduction
to several branches of modern mathematics.

In an article on “The Psychology of Puzzle Crazes” (Nineteenth
Century Magazine, December 1926) the great English puzzlist Henry
Ernest Dudeney made two complaints. The literature of recreational
mathematics, he said, is enormously repetitious, and the lack of an
adequate bibliography forces enthusiasts to waste time in devising
problems that have been devised long before. I am happy to report
that the need for such a bibliography has at last been met. Professor
William L. Schaaf, of Brooklyn College, compiled an excellent four-
volume bibliography, titled Recreational Mathematics, which can be
obtained from the National Council of Teachers of Mathematics. As
to Dudeney’s other complaint, I fear that it still applies to current
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books in the field, including this one, but I think readers will dis-
cover here more than the usual portion of fresh material that has
not previously found its way between book covers.

I would like to thank Gerard Piel, publisher of Scientific American,
and Dennis Flanagan, editor, for the privilege of appearing regularly
in the distinguished company of their contributors, and for permis-
sion to reprint my efforts in the present volume. And I am grateful
also to the thousands of readers, from all parts of the world, who
have taken the trouble to call my attention to mistakes (alas too fre-
quent) and to make valuable suggestions. In some cases this wel-
come feedback has been incorporated into the articles themselves,
but in most cases it is pulled together in an addendum at the end
of each chapter. The answers to problems (where necessary) also
appear at the end of the chapter. A bibliography of selected refer-
ences for further reading will be found at the close of the book.

And I must not fail to thank my wife, not only for competent and
fairly cheerful proofreading, but also for her patience during those
trying moments of mathematical meditation when I do not hear
what she is saying.

Martin Gardner
Dobbs Ferry, New York, 1959





Preface to the Second Edition

for more than twenty-five years I wrote a monthly column on
recreational mathematics for Scientific American. Those columns
have been reprinted in fifteen books. In 2005, when the Mathe-
matical Association of America (MAA) put all fifteen on a CD, type
was not reset. This severely limited what I could add to update the
columns and expand bibliographies. Because Cambridge University
Press is resetting type, I am now happily free to add as much fresh
material as I please.

I am indebted to Don Albers and to Peter Renz for initiating the
MAA’s joint venture with Cambridge to produce a uniform set of
all the Scientific American books and to Elwyn Berlekamp for sup-
port of preparation of the manuscript. I am equally indebted to my
many readers, both professional and amateur mathematicians, for
supplying so much new material for my columns.

I’m not a creative mathematician. I am a journalist who loves
math and who enjoys writing about what the real mathematicians
discover. Note that I say “discover.” I’m an unabashed Platonist who
believes, with all the great mathematicians past and present, that
mathematical truth is independent of human cultures. It is as firmly
“out there,” in its own strange and mysterious abstract realm, as the
stars are out there as material structures not made by us.

Martin Gardner
Norman, Oklahoma, 2008
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CHAPTER ONE

Hexaflexagons

flexagons are paper polygons, folded from straight or crooked
strips of paper, which have the fascinating property of changing
their faces when they are “flexed.” Had it not been for the trivial cir-
cumstance that British and American notebook paper are not the
same size, flexagons might still be undiscovered, and a number of
top-flight mathematicians would have been denied the pleasure of
analyzing their curious structures.

It all began in the fall of 1939. Arthur H. Stone, a 23-year-old grad-
uate student from England, in residence at Princeton University on
a mathematics fellowship, had just trimmed an inch from his Ameri-
can notebook sheets to make them fit his English binder. For amuse-
ment he began to fold the trimmed-off strips of paper in various
ways, and one of the figures he made turned out to be particularly
intriguing. He had folded the strip diagonally at three places and
joined the ends so that it made a hexagon (see Figure 1). When he
pinched two adjacent triangles together and pushed the opposite
corner of the hexagon toward the center, the hexagon would open
out again, like a budding flower, and show a completely new face. If,
for instance, the top and bottom faces of the original hexagon were
painted different colors, the new faces would come up blank and
one of the colored faces would disappear!

This structure, the first flexagon to be discovered, has three faces.
Stone did some thinking about it overnight and, on the following
day, confirmed his belief (arrived at by pure cerebration) that a more
complicated hexagonal model could be folded with six faces instead
of only three. At this point, Stone found the structure so interesting
that he showed his paper models to friends in the graduate school.

1



2 Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi

A

B
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D

Figure 1. Trihexaflexagon is constructed by cutting a strip of paper so that it may
be marked off in 10 equilateral triangles (A). The strip is folded backward along
the line ab and turned over (B). It is then folded backward again along the line cd
and the next-to-the-last-triangle placed on top of the first (C). The last triangle is
now folded backward and glued to the other side of the first (D). Fairly stiff paper
at least an inch and a half wide is recommended. (Artist: Bunji Tagawa)
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Figure 2. Hexahexaflexagon is constructed by cutting a strip of paper so that it
may be marked off in 19 triangles (A). The triangles on one side are numbered
1, 2, and 3; the triangles on the other, 4, 5, and 6. A similar pattern of colors or
geometrical figures may also be used. The strip of paper is then folded as shown
(B–D). It can be flexed to show six different faces. (Artist: Bunji Tagawa)

Soon “flexagons” were appearing in profusion at the lunch and din-
ner tables. The Flexagon Committee was organized to probe fur-
ther into the mysteries of flexigation. The other committee mem-
bers besides Stone were Bryant Tuckerman, a graduate student of
mathematics; Richard P. Feynman, a graduate student in physics;
and John W. Tukey, a young mathematics instructor.

The models were named hexaflexagons – hexa for their hexago-
nal form and flexagon for their ability to flex. Stone’s first model is a
trihexaflexagon (tri for the three different faces that can be brought
into view); his elegant second structure is a hexahexaflexagon (for
its six faces).

To make a hexahexaflexagon, you start with a strip of paper (the
tape used in adding machines serves admirably), which is divided
into 19 equilateral triangles (see Figure 2A). You number the tri-
angles on one side of the strip 1, 2, and 3, leaving the nineteenth
triangle blank, as shown in the drawing. On the opposite side the
triangles are numbered 4, 5, and 6, according to the scheme shown.
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Figure 3. Trihexaflexagon is flexed by pinching together two of its triangles (top).
The inner edge of the two opposite triangles may be opened with the other hand
(bottom). If the figure cannot be opened, the adjacent pair of triangles is pinched.
If the figure opens, it can be turned inside out, revealing a side that was not visible
before. (Artist: Bunji Tagawa)

Now you fold the strip so that the same underside numbers face
each other – 4 on 4, 5 on 5, 6 on 6, and so on. The resulting folded
strip, illustrated in Figure 2B, is then folded back on the lines ab and
cd (Figure 2C), forming the hexagon (Figure 2D); finally the blank
triangle is turned under and pasted to the corresponding blank tri-
angle on the other side of the strip. All this is easier to carry out with
a marked strip of paper than it is to describe.

If you have made the folds properly, the triangles on one visible
face of the hexagon will all be numbered 1, and on the other face
they will all be numbered 2. Your hexahexaflexagon is now ready for
flexing. Pinch two adjacent triangles together (see Figure 3), bend-
ing the paper along the line between them, and push in the opposite
corner; the figure may then open up to face 3 or 5. By random flexing
you should be able to find the other faces without much difficulty.
Faces 4, 5, and 6 are a bit harder to uncover than faces 1, 2, and 3. At



Hexaflexagons 5

Figure 4. Diagram of a Tuckerman traverse on a hexahexaflexagon.

times you may find yourself trapped in an annoying cycle that keeps
returning the same three faces over and over again.

Tuckerman quickly discovered that the simplest way to bring out
all the faces of any flexagon was to keep flexing it at the same cor-
ner until it refused to open, then to shift to an adjacent corner. This
procedure, known as the Tuckerman traverse, will bring up the six
faces of a hexahexa in a cycle of 12 flexes, but faces 1, 2, and 3 turn
up three times as often as faces 4, 5, and 6. A convenient way to dia-
gram a Tuckerman traverse is shown in Figure 4, the arrows indi-
cating the order in which the faces are brought into view. This type
of diagram can be applied usefully to the traversing of any type of
flexagon. When the model is turned over, a Tuckerman traverse runs
the same cycle in reverse order.

By lengthening the chain of triangles, the committee discovered,
one can make flexagons with 9, 12, 15 or more faces: Tuckerman
managed to make a workable model with 48! He also found that
with a strip of paper cut in a zigzag pattern (i.e., a strip with saw-
tooth rather than straight edges) it is possible to produce a tetrahex-
aflexagon (four faces) or a pentahexaflexagon. There are three differ-
ent hexahexaflexagons – one folded from a straight strip, one from
a chain bent into a hexagon, and one from a form that somewhat
resembles a three-leaf clover. The decahexaflexagon (10 faces) has
82 different variations, all folded from weirdly bent strips. Flexagons
can be formed with any desired number of faces, but beyond 10 the
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number of different species for each increases at an alarming rate.
All even-numbered flexagons, by the way, are made of strips with
two distinct sides, but those with an odd number of faces have only
a single side, like a Moebius surface.

A complete mathematical theory of flexigation was worked out in
1940 by Tukey and Feynman. It shows, among other things, exactly
how to construct a flexagon of any desired size or species. The
theory has never been published, though portions of it have since
been rediscovered by other mathematicians. Among the flexigators
is Tuckerman’s father, the distinguished physicist Louis B. Tucker-
man, who was formerly with the National Bureau of Standards.
Tuckerman senior devised a simple but efficient tree diagram for the
theory.

The Japanese attack on Pearl Harbor called a halt to the com-
mittee’s flexigation program, and war work soon scattered the four
charter members to the winds. Stone became a lecturer in math-
ematics at the University of Manchester in England and is now
at the University of Rochester. Feynman was a famous theoretical
physicist at the California Institute of Technology. Tukey, a profes-
sor of mathematics at Princeton, has made brilliant contributions
to topology and to statistical theory, which have brought him world-
wide recognition. Tuckerman is a mathematician at IBM’s research
center in Yorktown Heights, New York.

One of these days, the committee hopes to reconvene and write
a paper or two, which will be the definitive exposition of flexagon
theory. Until then, the rest of us are free to flex our flexagons and see
how much of the theory we can discover for ourselves.

ADDENDUM

In constructing flexagons from paper strips, it is a good plan to
crease all the fold lines back and forth before folding the model. As a
result, the flexagon flexes much more efficiently. Some readers have
made more durable models by cutting triangles from poster board
or metal and joining them with small pieces of tape or gluing them
to one long piece of tape, leaving spaces between them for flexing.
Louis Tuckerman keeps on hand a steel strip of such size that by
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Figure 5. (Artist: Bunji Tagawa.)

wrapping paper tape of a certain width around it he can quickly pro-
duce a folded strip of the type shown in Figure 2. This saves consid-
erable time in making flexagons from straight chains of triangles.

Readers have sent to me a large variety of ways in which flexagon
faces could be decorated to make interesting puzzles or display
striking visual effects. Each face of the hexahexa, for example,
appears in at least two different forms, owing to a rotation of the
component triangles relative to each other. Thus if we divide each
face as shown in Figure 5, using different colors for the A, B, and C
sections, the same face may appear with the A sections in the center
as shown, or with the B or C sections in the center. Figure 6 shows
how a geometrical pattern may be drawn on one face so as to appear
in three different configurations.

Figure 6. (Artist: Bunji Tagawa.)
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Of the 18 possible faces that can result from a rotation of the tri-
angles, three are impossible to achieve with a hexahexa of the type
made from a straight strip. This suggested to one correspondent
the plan of pasting parts of three different pictures on each face
so that by flexing the model properly, each picture could presum-
ably be brought together at the center while the other two would
be fragmented around the rim. On the three inner hexagons that
cannot be brought together, he pasted the parts of three pictures of
comely, undraped young ladies to make what he called a hexahexa-
frustragon. Another reader wrote that he achieved similar results by
pasting together two adjacent triangular faces. This prevents one
entire face from flexing into view, although the victim can see that it
exists by peeking into the model’s interior.

The statement that only 15 different patterns are possible on the
straight-strip hexahexa must be qualified. An unsymmetrical color-
ing of the faces discloses the curious fact that three of these fifteen
patterns have mirror-image partners. If you number the inner cor-
ners of each pattern with digits from 1 to 6, writing them in clock-
wise order, you will find that three of these patterns turn up with the
same digits in counterclockwise order. Bearing this asymmetry in
mind, one can say that the six faces of this hexahexa exhibit a total of
18 different configurations. This was first called to my attention by
Albert Nicholas, professor of education at Monmouth College, Mon-
mouth, Illinois, where the making of flexagons became something
of a craze in the early months of 1957.

I do not know who first used a printed flexagon as an advertis-
ing premium or greeting card. The earliest sent to me was a tri-
hexa distributed by the Rust Engineering Company of Pittsburgh to
advertise their service award banquet in 1955. A handsome hexa-
hexa, designed to display a variety of colored snowflake patterns,
was used by Scientific American for its 1956 Christmas card.

For readers who would like to construct and analyze flexagons
other than the two described in this chapter, here is a quick run-
down on some low-order varieties.

1. The unahexa. A strip of three triangles can be folded flat and
the opposite ends joined to make a Moebius strip with a tri-
angular edge. (For a more elegant model of a Moebius band
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with triangular edge, see Chapter 7.) Since it has one side
only, made up of six triangles, one might call it a unahexa-
flexagon, though of course it isn’t six-sided and it doesn’t flex.

2. The duahexa. Simply a hexagon cut from a sheet of paper. It
has two faces but doesn’t flex.

3. The trihexa. This has only the one form described in this
chapter.

4. The tetrahexa. This flexagon likewise has only one form. It is
folded from the crooked strip shown in Figure 7A.

5. The pentahexa. One form only. Folded from the strip in Fig-
ure 7B.

6. The hexahexa. There are three varieties, each with unique
properties. One of them is described in this chapter. The
other two are folded from the strips pictured in Figure 7C.

7. The heptahexa. This flexagon can be folded from the three
strips shown in Figure 7D. The first strip can be folded in two
different ways, making four varieties in all. The third form,
folded from the overlapping figure-8 strip, is the first of what
Louis Tuckerman calls the “street flexagons.” Its faces can
be numbered so that a Tuckerman traverse will bring upper-
most the seven faces in serial order, like passing the street
numbers on a row of houses.

The octahexa has 12 distinct varieties; the enneahexa has 27; and
the decahexa, 82. The exact number of varieties of each order can
be figured in more than one way, depending on how you define
a distinct variety. For example, all flexagons have an asymmetric
structure that can be right-handed or left-handed, but mirror-image
forms should hardly be classified as different varieties. For details on
the number of nonequivalent hexaflexagons of each order, consult
the paper by Oakley and Wisner listed in the bibliography.

Straight chains of triangles produce only hexaflexagons with
orders that are multiples of three. One variety of a 12-faced hexa
is particularly easy to fold. Start with a straight chain twice as long
as the one used for the hexahexa. “Roll” it into the form shown in
Figure 2B. The strip is now the same length as the one used for the
hexahexa. Fold this rolled strip exactly as if you were making a hex-
ahexa. The result is a dodecahexaflexagon.
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Figure 7. Crooked strips for folding hexaflexagons. The shaded triangles are tabs
for pasting. (Artist: Bunji Tagawa)

In experimenting with higher-order flexagons, a handy rule to
bear in mind is that the sum of the number of leaves (thicknesses
of paper) in two adjacent triangular sections always equals the num-
ber of faces. It is interesting to note also that if each face of a flexagon
is given a number or symbol, and the symbol marked on each
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triangular component, the order of symbols on the unfolded strip
always exhibits a threefold symmetry. For example, the strip for the
hexahexa in Figure 2 bears the following top and bottom pattern of
digits:

123123
445566

123123
445566

123123
445566

A triple division similar to this is characteristic of all hexahex-
aflexagons, although one of the three divisions is always inverted
on models of odd order.

Of the hundreds of letters I have received about flexagons, the
following two were the most amusing. They appeared in the March
and May issues of Scientific American in 1957.

Sirs:
I was quite taken with the article entitled “Flexagons” in your

December issue. It took us only six or seven hours to paste the hexa-
hexaflexagons together in the proper configuration. Since then it has
been a source of continuing wonder.

But we have a problem. This morning one of our fellows was sit-
ting flexing the hexahexaflexagon idly when the tip of his necktie
became caught in one of the folds. With each successive flex, more
of his tie vanished into the flexagon. With the sixth flexing he disap-
peared entirely.

We have been flexing the thing madly, and can find no trace of
him, but we have located a sixteenth configuration of the hexahex-
aflexagon.

Here is our question: Does his widow draw workmen’s compen-
sation for the duration of his absence, or can we have him declared
legally dead immediately? We await your advice.

Neil Uptegrove
Allen B. Du Mont Laboratories, Inc.
Clifton, N.J.

Sirs:
The letter in the March issue of your magazine complaining of the

disappearance of a fellow from the Allen B. Du Mont Laboratories
“down” a hexahexaflexagon, has solved a mystery for us.

One day, while idly flexing our latest hexahexaflexagon, we were
confounded to find that it was producing a strip of multicolored
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material. Further flexing of the hexahexaflexagon finally disgorged
a gum-chewing stranger.

Unfortunately he was in a weak state and, owing to an apparent
loss of memory, unable to give any account of how he came to be
with us. His health has now been restored on our national diet of por-
ridge, haggis, and whisky, and he has become quite a pet around the
department, answering to the names of Eccles.

Our problem is, should we now return him and, if so, by what
method? Unfortunately Eccles now cringes at the very sight of a hex-
ahexaflexagon and absolutely refuses to “flex.”

Robert M. Hill
The Royal College of Science and Technology
Glasgow, Scotland

POSTSCRIPT

The first book published on flexagons was The Mysterious Flexagons
by Madeline Jones. This small book was written for children and
contains nothing new on the topic.

Another book on flexagons is Flexagons Inside Out by Les (Leslie)
Pook. Dr. Pook is a retired professor of mechanical engineering at
University College London and the author of four books on engi-
neering and more than a hundred technical papers. His book is
a marvelous survey of flexagon theory, covering a wide variety of
flexagons, including higher-dimensional forms that he calls “flexa-
hedra.”

I saw my first flexagon in the Manhattan apartment of Royal V.
Heath, author of Mathemagic (a book of number tricks) and an
amateur magician. He showed me a large colored cloth hexahex-
aflexagon and told me it had been invented by a group of gradu-
ate students in mathematics at Princeton University. I had recently
sold Scientific American an article on logic machines and diagrams
(which I later expanded into a book). It occurred to me that the
magazine might like a piece on flexagons. I made a trip to Prince-
ton, where I interviewed three members of the flexagon group: John
Tukey, Louis Tuckerman, and his son Bryant. Stone had returned to
England, and Feynman was in California. My article on flexagons
ran in the December 1956 issue of Scientific American.
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Gerard Piel, the magazine’s publisher, called me to his office to
ask if there was enough similar material on recreational math to jus-
tify a monthly column. I said there was. The column began in the
January 1957 issue under the title “Mathematical Games” – a title
given to it by the magazine’s editors. By coincidence, its initials were
the same as mine. The rest is history. My December article intro-
duced flexagons to the general public, and all over Manhattan, espe-
cially in advertising offices, persons were happily folding and play-
ing with these magical paper structures.

Since then, flexagon theory has made enormous progress. I later
wrote a column on tetraflexagons, made with square “parts” instead
of equilateral triangles. It is reprinted in The Second “Scientific Amer-
ican” Book of Mathematical Games and Diversions.

Today, surprising advances in flexagon theory have been made,
and all sorts of fantastic varieties of flexagons have been and are still
being invented. At the time I write, more than 50 Web sites on the
Internet are devoted to the topic. I wouldn’t be surprised if any day
now someone forms a flexagon society that issues a periodical and
holds an annual convention!

I’ve been told that the famous mathematician John Conway, at
Princeton University, has made some breakthroughs in flexagon
theory based on what he calls “stack permutations,” but so far none
of it has been published.

I despair of any effort to summarize the furious Internet activ-
ity. At the center of it all is Ann Schwartz, whose sisters Ela and
Martha have a Web site that reports on Ann’s constructions and
other flexagon news. See Ela’s Web site article “Flexagon Fever.”
There are even Web sites that sell flexagons and related structures.
A magic supply firm called No Way is selling for $95 a 19-inch diam-
eter hexahexaflexagon made of styrene. Its faces have six different
colors. With it come sample stage routines including one based on
a gospel story.
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CHAPTER TWO

Magic with a Matrix

magic squares have intrigued mathematicians for more than
2,000 years. In the traditional form, the square is constructed so that
the numbers in each row, each column, and each diagonal add up to
the same total. However a magic square of an entirely different type
is pictured in Figure 8. This square seems to have no system: The
numbers appear to be distributed in the matrix at random. Never-
theless, the square possesses a magical property as astonishing to
most mathematicians as it is to laymen.

A convenient way to demonstrate this property is to equip your-
self with five pennies and 20 little paper markers (say pieces of paper
matches). Now ask someone to pick any number in the square.
Lay a penny on this number and eliminate all the other numbers
in the same row and in the same column by covering them with
markers.

Ask your spectator to pick a second number by pointing to any
uncovered cell. As before, put a penny on this number and cover
all the others in the same row and column. Repeat this procedure
twice more. One uncovered cell will remain. Cover it with the fifth
penny.

When you add the five numbers beneath the pennies – numbers
chosen seemingly at random – the total is certain to be 57. This is
no accident. The total will be the same with every repetition of the
experiment.

If you enjoy solving mathematical puzzles, you may wish to pause
at this point to analyze the square and see if you can discover its
secret yourself.

Like most tricks, this one is absurdly simple when explained.
The square is nothing more than an old-fashioned addition table,

16
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19 8 11 25

12 1 4 18

16 5 8 22

21 10 13 27
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9
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Figure 8

arranged in a tricky way. The table is generated by two sets of num-
bers: 12, 1, 4, 18, 0 and 7, 0, 4, 9, 2. The sum of these numbers is 57.
If you write the first set of numbers horizontally above the top row
of the square, and the second set vertically beside the first column
(see Figure 9), you can see at once how the numbers in the cells are
determined. The number in the first cell (top row, first column) is
the sum of 12 and 7, and so on through the square.

You can construct a magic square of this kind as large as you
like and with any combination of numbers you choose. It does not
matter in the least how many cells the square contains or what
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Figure 10

numbers are used for generating it. They may be positive or neg-
ative, integers or fractions, rationals or irrationals. The resulting
table will always possess the magic property of forcing a number by
the procedure described, and this number will always be the sum
of the two sets of numbers that generate the table. In the case given
here, you could break the number 57 into any eight numbers that
add up to that sum.

The underlying principle of the trick is now easy to see. Each
number in the square represents the sum of a pair of numbers in
the two generating sets. That particular pair is eliminated when a
penny is placed on the number. The procedure forces each penny
to lie in a different row and column. Thus the five pennies cover the
sums of five different pairs of the ten generating numbers, which is
the same as the sum of all ten numbers.

One of the simplest ways to form an addition table on a square
matrix is to start with 1 in the upper left corner and then con-
tinue from left to right with integers in serial order. A 4 × 4 matrix of
this sort becomes an addition table for the two sets of numbers
1, 2, 3, 4, and 0, 4, 8, 12 (Figure 10). This matrix will force the num-
ber 34.

The forced number is of course a function of the size of the
square. If n is the number of cells on a side, then the forced num-
ber will be

n3 + n
2
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On squares with an odd number of cells on the side, this forced
number will equal the product of n and the number on the center
cell.

If you start with a number higher than 1 (call it a) and continue
in serial order, the forced number will be

n3 + n
2

+ n(a − 1)

It is interesting to note that the forced number is the same as the
total of each row and column on a traditional magic square that is
formed from the same numerical elements.

By means of the second formula, it is easy to calculate the starting
number for a matrix of any desired size that will force any desired
number. An impressive impromptu stunt is to ask someone to give
you a number above 30 (this is specified to avoid bothersome minus
numbers in the matrix), then proceed to draw quickly a 4 × 4 matrix
that will force that number. (Instead of using pennies and paper
markers, a faster procedure is to let the spectator circle each cho-
sen number and then draw a line through its row and column.)

The only calculation you need to make (it can be done in your
head) is to subtract 30 from the number he names and then divide
by 4. For example, he calls out 43. Subtracting 30 gives 13. Dividing
13 by 4 results in 31/4. If you put this number in the first cell of a
4 × 4 matrix and continue in serial order with 41/4, 51/4, . . . , you will
produce a magic square that will force 43.

To make the square more baffling, however, the order of the num-
bers should be scrambled. For instance, you might put the first
number, 31/4 in a cell in the third row as shown in Figure 11, and the
next three numbers (41/4, 51/4, and 61/4) in the same row in a random
order. Now you may write the next four numbers in another row (it
does not matter which), but they must be in the same cell sequence
you followed before. Do exactly the same with the last two rows. The
final result will be something like the square shown in Figure 12.

If you want to avoid fractions and still force the number 43, you
can drop the 1/4 after all of the numbers and add 1 to each of the four
highest whole numbers, making them 16, 17, 18, and 19. Similarly
you would add 2 to these numbers if the fraction were 2/4, or 3 if it
were 3/4.
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31/4

Figure 11

Interchanging the order in rows or in columns has no effect on
the square’s magic property, and by scrambling the cells in this man-
ner, you make the matrix appear much more mysterious than it
really is.

Multiplication tables may also be used to force a number. In this
case, the chosen numbers must be multiplied instead of added. The
final product will equal the product of the numbers used to generate
the table.

I have not been able to discover who first applied this delight-
ful property of addition and multiplication tables to a trick. A
parlor stunt with numbered cards, based on the principle, was pub-
lished by Maurice Kraitchik on page 184 of his Mathematical Recre-
ations, 1942. This is the earliest reference I have found to the prin-
ciple. Since 1942, several mathematically inclined conjurers have

161/4 181/4 151/4 171/4

81/4 101/4 71/4 91/4

41/4 61/4 31/4 51/4

121/4 141/4 111/4 131/4

Figure 12
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introduced variations on the theme. For instance, Mel Stover of
Winnipeg observed that if you draw a square around 16 numbers
on any calendar page, the square forms an addition table that forces
a number twice the sum of the two numbers at either of the diago-
nally opposite corners.

The use of playing cards also opens up colorful possibilities. For
example, is it possible to arrange a deck so that it can be cut and
a square array of cards dealt from the cut that will always force the
same number? The principle is relatively unexplored and may have
many curious ramifications yet to be discovered.

ADDENDUM

Stewart James, a magician in Courtright, Ontario, devised a novel
variation of the magic square in which one can force any desired
word on an audience. Suppose you wish to force the word james.
You form a square of 25 cards, the undersides of which (unknown to
anyone but you) bear letters as follows:

J A M E S
J A M E S
J A M E S
J A M E S
J A M E S

Someone is asked to pick one of the cards by touching its back.
This card is placed aside, without showing its face, and all other
cards in the same row and column are removed. This procedure is
repeated three more times, then the one remaining card is placed
with the other four that have been selected. The five cards are then
turned over and arranged to spell james. The procedure makes it
impossible, of course, for the five selected cards to include dupli-
cates.

One reader wrote that he found the magic square an intrigu-
ing curiosity to draw on birthday cards for mathematically minded
friends. The recipient follows instructions, adds his chosen num-
bers, and is startled to find that the total is his age.
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Figure 13. A simple assignment problem.

AFTERWORD, 1988

Philip Goldstein, a magician who performs under the stage name
of Max Maven, thought of a clever way to present the magic square
trick that avoids forcing the last number. He gives a spectator felt-
tip pens of n colors where n is the square’s order. He then draws a
horizontal line through each row, using a different color for each row
and permuting the colors any way he likes. He then does the same
thing for each column. The numbers in the cells where horizontal
and vertical lines of the same color intersect are added. The sum is,
of course, the predetermined number.

POSTSCRIPT

Peter Renz called my attention to the close relationship between
magic matrices and what in the field of operations research are
called assignment problems.

Consider the 5 × 5 matrix shown in Figure 13. Along the top are
initials of the names of five workers – Ann, Ben, Charles, Doris, and
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Emily – at a plant that makes widgets. Under each initial a number
represents the worker’s productivity during, say, an hour. On the left
side of the matrix are the names of five machines. The accompany-
ing numbers represent the machine’s productivity in an hour.

Each number within the matrix stands for the combined pro-
ductivity when a worker is assigned to a particular machine. This
number is the sum of the machine’s number at the left of the row,
and the worker’s number at the top of the column.

The matrix clearly is magic! In this case, it forces the number 57
after five numbers are circled and added. Because 57 is a constant,
no matter how workers are assigned to machines their total produc-
tivity is certain to be 57.

Two good discussions of more advanced assignment problems
can be found in George B. Danzig, Linear Programming and Exten-
sions (Princeton University Press, 1963), and L. R. Ford, Jr., and D. R.
Fulkerson, Flows in Networks (Princeton University Press, 1962).
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CHAPTER THREE

Nine Problems

1. THE RETURNING EXPLORER

An old riddle runs as follows. An explorer walks one mile due south,
turns and walks one mile due east, turns again and walks one mile
due north. He finds himself back where he started. He shoots a
bear. What color is the bear? The time-honored answer is “White”
because the explorer must have started at the North Pole. Not long
ago, however, someone made the discovery that the North Pole is
not the only starting point that satisfies the given conditions! Can
you think of any other spot on the globe from which one could walk
a mile south, a mile east, a mile north and find himself back at his
original location?

2. DRAW POKER

Two men play a game of draw poker in the following curious man-
ner. They spread a deck of 52 cards face up on the table so that
they can see all the cards. The first player draws a hand by pick-
ing any five cards he chooses. The second player does the same.
The first player now may keep his original hand or draw up to five
cards. His discards are put aside out of the game. The second player
may now draw likewise. The person with the higher hand then wins.
Suits have equal value, so that two flushes tie unless one is made of
higher cards. After a while, the players discover that the first player
can always win if he draws his first hand correctly. What hand must
this be?

24
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Figure 14. The mutilated chessboard.

3. THE MUTILATED CHESSBOARD

The props for this problem are a chessboard and 32 dominoes. Each
domino is of such size that it exactly covers two adjacent squares on
the board. The 32 dominoes therefore can cover all 64 of the chess-
board squares. But now suppose we cut off two squares at diagonally
opposite corners of the board (see Figure 14) and discard one of the
dominoes. Is it possible to place the 31 dominoes on the board so
that all the remaining 62 squares are covered? If so, show how it can
be done. If not, prove that it is impossible.

4. THE FORK IN THE ROAD

Here’s a recent twist on an old type of logic puzzle. A logician vaca-
tioning in the South Seas finds himself on an island inhabited by the
two proverbial tribes of liars and truth-tellers. Members of one tribe
always tell the truth, members of the other always lie. He comes to
a fork in a road and has to ask a native bystander which branch he
should take to reach a village. He has no way of telling whether the
native is a truth-teller or a liar. The logician thinks a moment and
then asks one question only. From the reply, he knows which road to
take. What question does he ask?
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5. SCRAMBLED BOX TOPS

Imagine that you have three boxes, one containing two black mar-
bles, one containing two white marbles, and the third, one black
marble and one white marble. The boxes were labeled for their con-
tents – BB, WW, and BW – but someone has switched the labels so
that every box is now incorrectly labeled. You are allowed to take one
marble at a time out of any box, without looking inside, and by this
process of sampling you are to determine the contents of all three
boxes. What is the smallest number of drawings needed to do this?

6. BRONX VS. BROOKLYN

A young man lives in Manhattan near a subway express station.
He has two girl friends, one in Brooklyn and one in the Bronx. To
visit the girl in Brooklyn, he takes a train on the downtown side of
the platform; to visit the girl in the Bronx, he takes a train on the
uptown side of the same platform. He likes both girls equally well,
so he simply takes the first train that comes along. In this way he lets
chance determine whether he rides to the Bronx or to Brooklyn. The
young man reaches the subway platform at a random moment each
Saturday afternoon. Brooklyn and Bronx trains arrive at the station
equally often – every 10 minutes. Yet for some obscure reason, he
finds himself spending most of his time with the girl in Brooklyn:

In fact on the average, he goes there nine times out of ten. Can
you think of a good reason why the odds so heavily favor Brooklyn ?

7. CUTTING THE CUBE

A carpenter, working with a buzz saw, wishes to cut a wooden cube,
three inches on a side, into 27 one-inch cubes. He can do this easily
by making six cuts through the cube, keeping the pieces together in
the cube shape (see Figure 15). Can he reduce the number of neces-
sary cuts by rearranging the pieces after each cut?

8. THE EARLY COMMUTER

A commuter is in the habit of arriving at his suburban station each
evening exactly at five o’clock. His wife always meets the train and
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Figure 15. The sliced cube.

drives him home. One day he takes an earlier train, arriving at the
station at four o’clock. The weather is pleasant, so instead of tele-
phoning home, he starts walking along the route always taken by
his wife. They meet somewhere on the way. He gets into the car,
and they drive home, arriving at their house 10 minutes earlier than
usual. Assuming that the wife always drives at a constant speed, and
that on this occasion she left just in time to meet the five o’clock
train, how long did the husband walk before his wife picked him up?

9. THE COUNTERFEIT COINS

In recent years, a number of clever coin-weighing or ball-weighing
problems have aroused widespread interest. Here is a new and
charmingly simple variation. You have 10 stacks of coins, each con-
sisting of 10 half-dollars (see Figure 16). One entire stack is counter-
feit, but you do not know which one. You do know the weight of a
genuine half-dollar, and you are also told that each counterfeit coin
weighs one gram more than it should. You may weigh the coins on
a pointer scale. What is the smallest number of weighings necessary
to determine which stack is counterfeit?

ANSWERS

1. Is there any other point on the globe, besides the North Pole,
from which you could walk a mile south, a mile east, and a mile
north and find yourself back at the starting point? Yes indeed,
there is not just one point but an infinite number of them!
You could start from any point on a circle drawn around the
South Pole at a distance slightly more than 1 + 1/2π miles (about
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Figure 16. The counterfeit coins.

1.16 miles) from the Pole – the distance is “slightly more” to take
into account the curvature of the earth. After walking a mile
south, your next walk of one mile east will take you on a com-
plete circle around the Pole, and the walk one mile north from
there will then return you to the starting point. Thus your start-
ing point could be any one of the infinite number of points on
the circle with a radius of about 1.16 miles from the South Pole.
But this is not all. You could also start at points closer to the
Pole, so that the walk east would carry you just twice around the
Pole, or three times, and so on.

Suppose we ignore the restrictions that the explorer walks
south, east, and then north. He walks a mile in any direction,
turns 90 degrees, goes another mile, turns 90 degrees, walks a
mile and finds himself back where he started. Where does he
start? The answer, of course, is that he can start anywhere.

2. There are 88 winning first hands. They fall into two categories:
(1) four tens and any other card (48 hands); (2) three tens and
any of the following pairs from the suit not represented by a ten:
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A-9, K-9, Q-9, J-9, K-8, Q-8, J-8, Q-7, J-7, J-6 (40 hands). The sec-
ond category was called to my attention by two readers: Charles
C. Foster of Princeton, New Jersey, and Christine A. Peipers of
New York. I have never seen these hands included in any previ-
ously published answers to the problem.

3. It is impossible to cover the mutilated chessboard (with two op-
posite corner squares cut off) with 31 dominoes, and the proof
is easy. The two diagonally opposite corners are of the same
color. Therefore their removal leaves a board with two more
squares of one color than of the other. Each domino covers two
squares of opposite color, since only opposite colors are adja-
cent. After you have covered 60 squares with 30 dominoes, you
are left with two uncovered squares of the same color. These
two cannot be adjacent; therefore, they cannot be covered by
the last domino.

Ralph Gomory asked himself, if two cells of opposite color are
removed from anywhere on a chessboard, can the remaining
area be covered by 31 dominoes? His beautiful proof that the
answer is “yes” can be found in Chapter 16 of my Unexpected
Hanging.

4. If we require that the question be answerable by “yes” or “no,”
there are several solutions, all exploiting the same basic gim-
mick. For example, the logician points to one of the roads and
says to the native, “If I were to ask you if this road leads to the
village, would you say ‘yes’?” The native is forced to give the
right answer, even if he is a liar! If the road does lead to the vil-
lage, the liar would say “no” to the direct question, but as the
question is put, he lies and says he would respond “yes.” Thus
the logician can be certain that the road does lead to the vil-
lage, whether the respondent is a truth-teller or a liar. On the
other hand, if the road actually does not go to the village, the
liar is forced in the same way to reply “no” to the inquirer’s
question.

A similar question would be, “If I asked a member of the other
tribe whether this road leads to the village, would he say ‘yes’?”
To avoid the cloudiness that results from a question within a
question, perhaps this phrasing (suggested by Warren C. Hagg-
strom, of Ann Arbor, Michigan) is best: “Of the two statements,
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‘You are a liar’ and ‘This road leads to the village,’ is one and
only one of them true?” Here again, a “yes” answer indicates it
is the road, a “no” answer that it isn’t, regardless of whether the
native lies or tells the truth.

Dennis Sciama, Cambridge University cosmologist, and John
McCarthy of Hanover, New Hampshire, called my attention to
a delightful additional twist on the problem. “Suppose,” Mr.
McCarthy wrote (in a letter published in Scientific American,
April 1957), “the logician knows that ‘pish’ and ‘tush’ are the
native words for ‘yes’ and ‘no’ but has forgotten which is which,
though otherwise he can speak the native language. He can still
determine which road leads to the village.

“He points to one of the roads and asks, ‘If I asked you
whether the road I am pointing to is the road to the village
would you say pish?’ If the native replies, ‘Pish,’ the logician
can conclude that the road pointed to is the road to the village
even though he will still be in the dark as to whether the native
is a liar or a truth-teller and as to whether ‘pish’ means yes or
no. If the native says, ‘Tush,’ he may draw the opposite conclu-
sion.”

H. Janzen of Queens University, Kingston, Ontario, and sev-
eral other readers informed me that if the native’s answer does
not have to be “yes” or “no,” there is a question that reveals the
correct road regardless of how many roads meet at the intersec-
tion. The logician simply points to all the roads, including the
one he has just traveled, and asks, “Which of these roads leads
to the village?” The truth-teller points to the correct one, and
the liar presumably points to all the others. The logician could
also ask, “Which roads do not lead to the village?” In this case
the liar would presumably point only to the correct one. Both
cases, however, are somewhat suspect. In the first case the liar
might point to only one incorrect road and in the second case
he might point to several roads. These responses would be lies
in a sense, though one would not be the strongest possible lie
and the other would contain a bit of truth.

The question of how precisely to define “lying” even enters
into the previous “yes” and “no” solutions. I know of no bet-
ter way to make this clear than by quoting in full the following
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letter, which Scientific American received from Willison Crich-
ton and Donald E. Lamphiear, both of Ann Arbor, Michigan.

It is a sad commentary on the rise of logic that it leads to the
decay of the art of lying. Even among liars, the life of reason
seems to be gaining ground over the better life. We refer to puz-
zle number 4 in the February issue, and its solution. If we accept
the proposed solution, we must believe that liars can always
be made the dupes of their own principles, a situation, indeed,
which is bound to arise whenever lying takes the form of slavish
adherence to arbitrary rules.

For the anthropologist to say to the native, “If I were to ask you
if this road leads to the village, would you say ‘yes’?” expecting
him to interpret the question as counterfactual conditional in
meaning as well as form, presupposes a certain preciosity on the
part of the native. If the anthropologist asks the question casu-
ally, the native is almost certain to mistake the odd phraseology
for some civility of manner taught in Western democracies, and
answer as if the question were simply, “Does this road lead to
the village?” On the other hand, if he fixes him with a glitter-
ing eye in order to emphasize the logical intent of the question,
he also reveals its purpose, arousing the native’s suspicion that
he is being tricked. The native, if he is worthy the name of liar,
will pursue a method of counter-trickery, leaving the anthropol-
ogist misinformed. On this latter view, the proposed solution is
inadequate, but even in terms of strictly formal lying, it is faulty
because of its ambiguity.

The investigation of unambiguous solutions leads us to a
more detailed analysis of the nature of lying. The traditional def-
inition employed by logicians is that a liar is one who always says
what is false. The ambiguity of this definition appears when we
try to predict what a liar will answer to a compound truth func-
tional question, such as, “Is it true that if this is the way to town,
you are a liar?” Will he evaluate the two components correctly
in order to evaluate the function and reverse his evaluation in
the telling, or will he follow the impartial policy of lying to him-
self as well as to others, reversing the evaluation of each com-
ponent before computing the value of the function, and then
reversing the computed value of the function? Here we distin-
guish the simple liar who always utters what is simply false from
the honest liar who always utters the logical dual of the truth.
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The question, “Is it true that if this is the way to town, you are
a liar?” is a solution if our liars are honest liars. The honest liar
and the truth-teller both answer “yes” if the indicated road is not
the way to town, and “no” if it is. The simple liar, however, will
answer “no” regardless of where the village is. By substituting
equivalence for implication we obtain a solution which works
for both simple and honest liars. The question becomes, “Is it
true that this is the way to town if and only if you are a liar?” The
answer is uniformly “no” if it the way, and “yes” if it is not.

But no lying primitive savage could be expected to display
the scrupulous consistency required by these conceptions, nor
would any liar capable of such acumen be so easily outwitted.
We must therefore consider the case of the artistic liar whose
principle is always to deceive. Against such an opponent the
anthropologist can only hope to maximize the probability of
a favorable outcome. No logical question can be an infallible
solution, for if the liar’s principle is to deceive, he will counter
with a strategy of deception which circumvents logic. Clearly the
essential feature of the anthropologist’s strategy must be its psy-
chological soundness. Such a strategy is admissible since it is
even more effective against the honest and the simple liar than
against the more refractory artistic liar.

We therefore propose as the most general solution the follow-
ing question or its moral equivalent, “Did you know that they
are serving free beer in the village?” The truth-teller answers
“no” and immediately sets off for the village, the anthropolo-
gist following. The simple or honest liar answers “yes” and sets
off for the village. The artistic liar, making the polite assumption
that the anthropologist is also devoted to trickery, chooses his
strategy accordingly. Confronted with two contrary motives, he
may pursue the chance of satisfying both of them by answering,
“Ugh! I hate beer!” and starting for the village. This will not con-
fuse a good anthropologist. But if the liar sees through the ruse,
he will recognize the inadequacy of this response. He may then
make the supreme sacrifice for the sake of art and start down
the wrong road. He achieves a technical victory, but even so, the
anthropologist may claim a moral victory, for the liar is punished
by the gnawing suspicion that he has missed some free beer.

5. You can learn the contents of all three boxes by drawing just
one marble. The key to the solution is your knowledge that the
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labels on all three of the boxes are incorrect. You must draw a
marble from the box labeled BW. Assume that the marble drawn
is black. You know then that the other marble in this box must
be black also; otherwise, the label would be correct. Since you
have now identified the box containing two black marbles, you
can at once tell the contents of the box marked WW: You know
it cannot contain two white marbles because its label has to be
wrong; it cannot contain two black marbles, for you have identi-
fied that box; therefore, it must contain one black and one white
marble. The third box, of course, must then be the one holding
two white marbles. You can solve the puzzle by the same rea-
soning if the marble you draw from the BW box happens to be
white instead of black.

6. The answer to this puzzle is a simple matter of train sched-
ules. Even though the Brooklyn and Bronx trains arrive equally
often – at 10-minute intervals – it happens that their schedules
are such that the Bronx train always comes to this platform one
minute after the Brooklyn train. Thus the Bronx train will be the
first to arrive only if the young man happens to come to the sub-
way platform during this one-minute interval. If he enters the
station at any other time (i.e., during a nine-minute interval),
the Brooklyn train will come first. Since the young man’s arrival
is random, the odds are 9:1 for Brooklyn.

7. There is no way to reduce the cuts to fewer than six. This is at
once apparent when you focus on the fact that a cube has six
sides. The saw cuts straight – one side at a time. To cut the one-
inch cube at the center (the one that has no exposed surfaces to
start with) must take six passes of the saw.

This problem was originated by Frank Hawthorne, supervi-
sor of mathematics education, State Department of Education,
Albany, New York, and first published in Mathematics Maga-
zine, September–October 1950 (Problem Q-12).

Cubes of 2 × 2 × 2 and 3 × 3 × 3 are unique in the sense
that regardless of how the pieces are rearranged before each cut
(provided each piece is cut somewhere), the former will always
require three cuts and the latter six to slice into unit cubes.

The 4 × 4 × 4 cube requires nine cuts if the pieces are kept
together as a cube, but by proper piling before each cut, the
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number of cuts can be reduced to six. If at each piling you see
that every piece is cut as nearly in half as possible, the minimum
number of cuts will be achieved. In general, for an n × n × n
cube, the minimum number of cuts is 3k where k is defined by

2k ≥ n > 2k−1

This general problem was posed by L. R. Ford, Jr., and D.
R. Fulkerson, both of The Rand Corporation, in the Ameri-
can Mathematical Monthly, August–September 1957 (Problem
E1279), and answered in the March 1958 issue. The problem is
a special case of a more general problem (the minimum cuts for
slicing an a × b × c block into unit cubes) contributed by Leo
Moser, of the University of Alberta, to Mathematics Magazine,
Vol. 25, March–April 1952, p. 219.

Eugene J. Putzer and R. W. Lowen generalized the problem
still further in a research memorandum, “On the Optimum
Method of Cutting a Rectangular Box into Unit Cubes,” issued
in 1958 by Convair Scientific Research Laboratory, San Diego.
The authors considered blocks of n-dimensions, with integral
sides, which are to be sliced by a minimum number of planar
cuts into unit hypercubes. In three dimensions, the problem is
one that the authors feel might “have important applications in
the cheese and sugar-loaf industries.”

8. The commuter has walked for 55 minutes before his wife picks
him up. Since they arrive home 10 minutes earlier than usual,
this means that the wife has chopped 10 minutes from her usual
travel time to and from the station, or 5 minutes from her travel
time to the station. It follows that she met her husband 5 min-
utes before his usual pick-up time of five o’clock, or at 4:55. He
started walking at four o’clock; therefore, he walked for 55 min-
utes. The man’s speed of walking, the wife’s speed of driving,
and the distance between home and station are not needed for
solving the problem. If you tried to solve it by juggling figures for
these variables, you probably found the problem exasperating.

When this problem was presented in Scientific American, it
was unfortunately worded, suggesting that the wife habitually
arrived early at the station and waited for the five-o’clock train.
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Figure 17. Graph of the commuter problem.

If this is the case, the husband’s walking time lies within a range
of 50 to 55 minutes.

A number of readers pointed out that the problem yields
readily to solution by what Army logisticians call a march graph
(see Figure 17). Time is plotted on the horizontal axis; distance
on the vertical. The graph shows clearly that the wife could leave
home up to 10 minutes earlier than the leaving time required
to just meet the train. The lower limit (50 minutes) of her hus-
band’s walking time can occur only when the wife leaves a full
10 minutes earlier and either drives habitually at infinite speed
(in which case her husband arrives home at the same moment
she leaves), or the husband walks at an infinitesimal speed (in
which case she meets him at the station after he has walked
50 minutes and gotten nowhere). “Neither image rings false,”
wrote David W. Weiser, assistant professor of natural science
at the University of Chicago, in one of the clearest analyses I
received of the problem, “considering the way of a wife with a
car, or of a husband walking past a tavern.”
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9. The counterfeit stack can be identified by a single weighing of
coins. You take one coin from the first stack, two from the sec-
ond, three from the third, and so on until you have taken all ten
coins of the tenth stack. You then weigh the whole sample col-
lection on the pointer scale. The excess weight of this collection,
in number of grams, corresponds to the number of the coun-
terfeit stack. For example, if the group of coins weighs 7 grams
more than it should, then the counterfeit stack must be the sev-
enth one, from which you took seven coins (each weighing 1
gram more than a genuine half-dollar). Even if there had been
an eleventh stack of ten coins, the procedure just described
would still work, for no excess weight would indicate that the
one remaining stack was counterfeit.



CHAPTER FOUR

Ticktacktoe

who has not as a child played ticktacktoe, that most ancient
and universal struggle of wits of which Wordsworth wrote (Prelude,
Book I):

At evening, when with pencil, and smooth slate
In square divisions parcelled out and all
With crosses and with cyphers scribbled o’er,
We schemed and puzzled, head opposed to head
In strife too humble to be named in verse.

At first sight it is not easy to understand the enduring appeal of a
game that seems no more than child’s play. While it is true that even
in the simplest version of the game, the number of possible moves
is very large – 15,120 (9 × 8 × 7 × 6 × 5) different sequences for the
first five moves alone – there are really only a few basic patterns. Any
astute youngster can become an unbeatable player by analyzing the
game for an hour or so. But ticktacktoe also has its more complex
variations and strategic aspects.

In the lingo of game theory, ticktacktoe is a two-person contest
that is “finite” (comes to a definite end), has no element of chance,
and is played with “perfect information,” all moves being known to
both players. If played “rationally” by both sides, the game must end
in a draw. The only chance of winning is to catch an unwary oppo-
nent in a “trap” where a row can be scored on the next move in two
ways, only one of which can be blocked.

Of the three possible opening plays – a corner, the center or a
side box – the strongest opening is the corner because the opponent
can avoid being trapped at the next move only by one of the eight

37
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Figure 18. The first player (X) has a choice of three openings. To avoid losing,
second player (O) must choose one of the cells indicated.

possible choices: the center. Conversely, center opening traps can
be blocked only by seizing a corner. The side opening, in many ways
the most interesting because of its richness in traps on both sides,
must be met by taking one of four cells. The three openings and the
possible responses by a second player who plays rationally are dia-
gramed in Figure 18.

Variants of ticktacktoe that are mathematically more exciting
than the present form were played many centuries before the Chris-
tian era. All of them employ six counters and can be played on the
board pictured in Figure 19 – with one player using three pennies,
the other, three dimes. In the simplest form, popular in ancient
China, Greece, and Rome, players take turns placing a counter on
the board until all six are down. If neither player has won by getting
three in a row (orthogonally or diagonally) they continue playing by
moving on each turn a single counter to any adjacent square. Only
moves along the orthogonals are permitted.

Figure 19. Ticktacktoe with moving counters.
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Ovid mentions this game in Book III of his Art of Love, including
it among a group of games that he advises women to master if they
wish to be popular with men. The game was common in England
in 1300 when it was called three men’s morris, the ancestor of 9, 11,
and 12 men’s morris, or “mill” as it is usually called in the United
States today. Because the first player has a sure win by playing first
in the center, this opening is usually barred. With this restriction,
the game is a draw if played rationally, but it swarms with potential
traps on both sides.

A variation of this game permits moves to neighboring cells
along the two main diagonals of the square. A further extension
(attributed to early American Indians) allows any counter to move
one step in any direction, orthogonally or diagonally (e.g., a move
can be made from cell 2 to cell 4). In the first version the initial player
can still force a win if allowed to open on the center, but the second
variant is probably a draw. A free-wheeling version called les pen-
dus (“the hanged”) in France permits any piece to be moved to any
vacant cell. This also is believed to end in a draw if played rationally.

Many variations of moving-counter ticktacktoe have been
applied to 4 × 4 boards, each player using four counters and striv-
ing to get four in a row. A few years ago magician John Scarne mar-
keted an interesting 5 × 5 version called teeko. Players take turns
placing four counters each, then alternate with one-unit moves in
any direction. A player wins by getting four in a row, orthogonally or
diagonally, or in a square formation on four adjacent cells.

Many delightful versions of ticktacktoe do not, however, use mov-
ing counters. For example, toetacktick (a name supplied by reader
Mike Shodell of Great Neck, New York) is played like the usual game
except that the first player to get three in a row loses. The second
player has a decided advantage. The first player can force a draw
only if he plays first in the center. Thereafter, by playing symmetri-
cally opposite the second player, he can ensure the draw.

In recent years, several three-dimensional ticktacktoe games
have been marketed. They are played on cubical boards, a win being
along any orthogonal or diagonal row as well as on the four main
diagonals of the cube. On a 3 × 3 × 3 cube the first player has an
easy win. Curiously, the game can never end in a draw because the
first player has 14 plays, and it is impossible to make all 14 of them
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Figure 20. Four-dimensional ticktacktoe. Dotted lines show some winning
plays.

without scoring. The 4 × 4 × 4 cube leads to more interesting play
and may or may not be a draw if played rationally.

Other ways of playing on cubes have been proposed. Alan Barn-
ert of New York suggests defining a win as a square array of counters
on any of the orthogonal planes as well as on the six main diagonal
planes. Price Parks and Robert Satten, while students at the Univer-
sity of Chicago in 1941, devised an interesting 3 × 3 × 3 cubical game
in which one wins by forming two intersecting rows. The winning
move must be on the point of intersection. Because an early move
into the center cubicle ensures a win, this move is barred unless it
is a winning move or necessary to block an opponent from winning
on his next move.

Four-dimensional ticktacktoe can be played on an imaginary
hypercube by sectioning it into two-dimensional squares. A 4 × 4 ×
4 × 4 hypercube, for example, would be diagramed as shown in Fig-
ure 20. On this board, a win of four in a row is achieved if four marks
are in a straight line on any cube that can be formed by assembling
four squares in serial order along any orthogonal or either of the two
main diagonals. Figure 21 shows a win on such an assembled cube.
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Figure 21. The assembled cube.

The first player is believed to have a sure win, but the game may be a
draw if played on a 5 × 5 × 5 × 5 hypercube. The number of possible
rows on which one can win on a cube of n-dimensions is given by
the following formula (n is the number of dimensions, k the number
of cells on a side):

(k + 2)n − kn

2

For an explanation of how this formula is derived, see Leo Moser’s
comments in the American Mathematical Monthly, February 1948,
page 99.

The ancient Japanese game of go-moku (“five stones”), still popu-
lar in Asia, is played on the intersections of a go board (this is equiv-
alent to playing on the cells of a 19 × 19 square). Players take turns
placing counters from an unlimited supply until one player wins
by getting five in a line, orthogonally or diagonally. No moves are
allowed. Experts are of the opinion that the first player can force a
win, but as far as I know, no proof of this has ever been published.
The game became popular in England in the 1880s under the name
of go-bang. It was sometimes played on an ordinary checkerboard,
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each player using 12 or 15 checkers. Moves were permitted in any
direction if no one had won by the time all the checkers were placed.

During the past decade, a number of electrical ticktacktoe-
playing machines have been constructed. It is interesting to learn
that the first ticktacktoe robot was invented (though never actu-
ally built) by Charles Babbage, the nineteenth-century English pio-
neer inventor of calculating devices. Babbage planned to exhibit his
machine in London to raise funds for more ambitious work, but
he abandoned his plans after learning that current London exhibits
of curious machines (including a “talking machine” and one that
made Latin verses) had been financial flops.

A novel feature of Babbage’s robot was its method of randomiz-
ing choices when faced with alternate lines of equally good play. The
machine kept a running total of the number of games won. If called
upon to choose between moves A and B, the machine consulted this
total, played A if the number was even and B if odd. For three alter-
natives, the robot divided the total by 3 to obtain a remainder of 0, 1,
or 2, each result gearing it to a different move. “It is obvious that any
number of conditions might be thus provided for,” Babbage writes
in his Passages from the Life of a Philosopher, 1864, pages 467–471.
“An inquiring spectator . . . might watch a long time before he dis-
covered the principle upon which it [the robot] acted.”

Unfortunately, Babbage left no record of what he calls the “sim-
ple” mechanical details of his machine, so one can only guess at
its design. He does record, however, that he “imagined that the
machine might consist of the figures of two children playing against
each other, accompanied by a lamb and a cock. That the child who
won the game might clap his hands whilst the cock was crowing,
after which, that the child who was beaten might cry and wring his
hands whilst the lamb began bleating.” A less imaginative ticktack-
toe machine, displayed in 1958 at the Portuguese Industrial Fair in
Lisbon, cackled when it won, snarled when it lost (presumably when
it was set on a “poor play” circuit).

It might be thought that programming a digital computer to play
ticktacktoe, or designing special circuits for a ticktacktoe machine,
would be simple. This is true unless your aim is to construct a master
robot that will win the maximum number of games against inexpe-
rienced players. The difficulty lies in guessing how a novice is most
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likely to play. He certainly will not move entirely at random, but just
how shrewd will he be?

To give an idea of the sort of complications that arise, assume that
the novice opens on cell 8. The machine might do well to make an
irrational response by seizing cell 3! This would be fatal against an
expert, but if the player is only moderately skillful, he is not likely to
hit on his one winning reply, cell 9. (See comments on Alain White’s
article in the bibliography.) Of the six remaining replies, four are dis-
astrous. There will be, in fact, a strong temptation for him to play on
cell 4 because this leads to two promising traps against the robot.
Unfortunately, the robot can spring its own trap by following with
cell 9 and then cell 5 on its next move. It might turn out that in
actual play the machine would win more often by this reckless strat-
egy than with a safe course that would most likely end in a draw.

A truly master player, robot or human, would not only know
the most probable responses of novices, as determined by statis-
tical studies of past games, but he would also analyze each oppo-
nent’s style of play to determine what sort of mistakes the opponent
would most likely make. If the novice improved as he played, this too
would have to be considered. At this point, the humble game of tick-
tacktoe plunges us into far from trivial questions of probability and
psychology.

ADDENDUM

The name “ticktacktoe” has many variations in spelling and pronun-
ciation. According to the Oxford Dictionary of Mother Goose Rhymes,
1951, page 406, it derives from an old English nursery rhyme that
goes:

Tit, tat, toe,
My first go,
Three jolly butcher boys all in a row.
Stick one up, stick one down,
Stick one in the old man’s crown.

I have observed that many ticktacktoe players are under the mis-
taken impression that because they can play an unbeatable strategy
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they have nothing more to learn about the game. A master player,
however, must be quick to take the best possible advantage of a bad
play. The following three examples, all from the side opening, will
make this clear.

If you open with X8 and your opponent follows with O2, your
best response against a novice is X4 because it wins in four out of
six moves now open to O. He can block your traps only by playing
O7 or O9.

If he opens with X8 and you respond with a lower corner, say O9,
you can spring winning traps if he plays X2, X4, or X7.

If he opens with X8, a response of O5 may lead to an amusing
development. Should he take X2, you can then permit him to desig-
nate your own next move for it is impossible for you to play without
being able to set a winning trap!

It was mentioned in the chapter that the moving-counter varia-
tion popular in ancient Rome is a win for the first player if he takes
the center square. For readers who are interested, the two possible
lines of forced play are as follows:

X O
5 3
4 6

(1) 9 1
4 to 7 Any move
5 to 8

5 6
1 9

(2) 3 2
1 to 4 Any move
4 to 7

These lines of play will win regardless of whether moves along the
two main diagonals are or are not permitted, but the first one fails if
moves along short diagonals are legal.

AFTERWORD, 1988

In the chapter on ticktacktoe, I said that the three-dimensional
4 × 4 × 4 game was unsolved. Oren Patashnik, at Bell Laboratories,
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cracked the game in 1977 with a computer program almost as com-
plex as the program that proved the four-color map conjecture in
1976. Details are given in Patashnik’s article, cited in the bibliog-
raphy. Incidentally, the proof that the first player can always win a
game of Hex if he plays correctly (Chapter 8) also applies to tick-
tacktoe games. If the game can end in a draw, it proves that the first
player can always force either a draw or a win. For more on ticktack-
toe and its endless variants, see Chapter 13 in Book 14.

POSTSCRIPT

The magician John Scarne invented and promoted a ticktacktoe-like
game in which counters move on a board after they are placed. He
called the game teeko, and even published (Crown) an entire book
on the game. He was so proud of it that he named a son Teeko
Scarne.

By far the most interesting generalization of ticktacktoe was
made and analyzed in depth by the noted graph theorist Frank
Harary. On the order-3 board of traditional ticktacktoe the objec-
tive is to form (or force an opponent to form) a straight tromino.
Harary proposed games on n × n fields in which the objective is
any polyomino, especially the tetrominoes and pentominoes. I dis-
cussed this happy generalization in Chapter 13 of Book 14. The field
still poses many intriguing unanswered questions.

Here is a pleasant little problem that I found in the Spring 2007
issue of the British periodical Mathematical Pie. Place six Xs on the
ticktacktoe field so that there are no three in a line. The solution,
which I leave to the reader, is unique.

Can you generalize the problem to n × n fields? Hint: A main
diagonal filled with Os is the smallest set of cells that prevent a row,
column, or diagonal from containing n Xs.
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Further references are at the end of Chapter 9 in Wheels, Life, and Other
Mathematical Amusements.

On variants of ticktacktoe, see my Book 5, Chapter 12; Book 7,
Chapter 10; Book 6, Chapter 16; Book 10, Chapter 9; and Book 14,
Chapter 13.



CHAPTER FIVE

Probability Paradoxes

probability theory is a field of mathematics unusually rich in
paradoxes – truths that cut so strongly against the grain of common
sense that they are difficult to believe even after one is confronted
with their proofs. The paradox of birth dates is a sterling example.
If 24 people are selected at random, what would you estimate the
probability to be that two or more of them will have the same birth-
day (i.e., that is, the same month and day of the year)? Intuitively,
you may feel it should be very low. In fact, it is 27/50 or slightly bet-
ter than 50 percent!

George Gamow, in One Two Three – Infinity, gives the follow-
ing simple method of arriving at this unexpected result. The prob-
ability that the birthdays of any two people are not alike is clearly
364/365 (since there is only one chance in 365 that one person’s
birthday will coincide with another’s). The probability that a third
person’s birthday will differ from the other two is 363/365; a fourth
person’s 362/365, and so on until we reach the twenty-fourth per-
son (342/365). We thus obtain a series of 23 fractions that must be
multiplied together to reach the probability that all 24 birthdays are
different. The final product is a fraction that reduces to 23/50. In
other words, if you were to bet on at least one coincidence of birth
dates among 24 people, you would in the long run lose 23 and win
27 out of every 50 such bets. (This computation ignores February 29
and also the fact that birth dates tend to be concentrated more in
certain months than others; the former lowers the probability, the
latter raises it.)

These odds are so surprising that an actual testing of them in
a classroom or at a social gathering makes for an entertaining
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Figure 22. Redrawn from William Ransom.

diversion. If more than 23 people are present, let each person write
his birthday on a slip of paper. Collect and compare the slips. More
likely than not, at least two dates will match, often much to the
astonishment of the parties concerned who may have known each
other for years. Fortunately, it does not matter in the least if anyone
cheats by giving an incorrect date. The odds remain exactly the
same.

An even easier way to test the paradox is by checking birth dates
on 24 names picked at random from a Who’s Who or some other bio-
graphical dictionary. Of course the more names you check beyond
24, the greater the probability of a coincidence. Figure 22 (from
William R. Ransom’s One Hundred Mathematical Curiosities, 1955)
shows in graph form how the probability curve rises with an increas-
ing number of persons. The graph stops with 60 people because
beyond that number the probability is too close to certainty for the
curve to be distinguished on the graph from a straight line. Note
how the curve climbs steeply until it reaches about 40 people and
then levels off toward certainty. For 100 people, the odds for a fair
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bet on a coincidence are about 3,300,000 to 1. Absolute certainty is
not reached, of course, until 366 people are involved.

A neat illustration of the paradox is provided by the birth and
death dates of the presidents of the United States. The probability of
a coincidence in each case (33 birth dates, 30 death dates) is close to
75 percent. Sure enough, Polk and Harding were born on November
2, and three presidents – Jefferson, Adams and Monroe – all died on
July 4.

Perhaps even more astounding is the paradox of the second ace.
Assume that you are playing bridge and just after the cards are dealt
you look over your hand and announce, “I have an ace.” The prob-
ability that you have a second ace can be calculated precisely. It
proves to be 5,359/14,498 which is less than 1/2. Suppose, however,
that all of you agree upon a particular ace, say the Ace of Spades.
The play continues until you get a hand that enables you to say, “I
have the Ace of Spades.” The probability that you have another ace
is now 11,686/20,825 or slightly better than 1/2! Why should naming
the ace affect the odds?

The actual computation of chances in these two cases is long
and tedious, but the working of the paradox can be easily under-
stood by reducing the deck to only four cards – Ace of Spades, Ace
of Hearts, Two of Clubs, and Jack of Diamonds. If these cards are
shuffled and dealt to two players, there are only six possible com-
binations (shown in Figure 23) that a player can hold. Five of these
two-card hands permit the player to say, “I have an ace,” but in only
one instance does he have a second ace. Consequently the prob-
ability of the second ace is 1/5. On the other hand, there are only
three combinations that permit the player to declare than he holds
the Ace of Spades. One of them includes another ace, making the
probability of the second ace 1/3.

A similar paradox is that of the second child. Mr. Smith says, “I
have two children and at least one of them is a boy.” What is the
probability that the other child is a boy? One is tempted to say 1/2
until he lists the three possible combinations of equally probable
possibilities – BB, BG, GB. Only one is BB, hence the probability is
1/3. Had Smith said that his oldest (or tallest, heaviest, etc.) child is
a boy, then the situation would be entirely different. Now the com-
binations are restricted to BB and BG, and the probability that the
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Figure 23

other child is male jumps to 1/2. If this were not the case we would
have a most ingenious way to guess the face of a concealed coin
with better than even odds. We would simply flip our own coin. If
it came up heads, we would reason: “There are two coins here and
one of them (mine) is heads. The probability the other is heads is
therefore 1/3, so I will bet that it is tails.” The fallacy of course is that
we are specifying which coin is heads. This is the same as identify-
ing the oldest child as the boy, and it changes the odds in a similar
fashion.

The most famous of all probability paradoxes is the St. Peters-
burg paradox, first set forth in a paper by the famous mathemati-
cian Daniel Bernoulli before the St. Petersburg Academy. Suppose I
toss a penny and agree to pay you a dollar if it falls heads. If it comes
up tails, I toss again, this time paying you two dollars if the coin is
heads. If it is tails again, I toss a third time and pay four dollars if it
falls heads. In short, I offer to double the penalty with each toss and
I continue until I am obliged to pay off. What should you pay for the
privilege of playing this one-sided game with me?

The unbelievable answer is that you could pay me any amount,
say a million dollars, for each game and still expect to come out
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ahead. In any single game there is a probability of 1/2 that you will
win a dollar, 1/4 that you will win two dollars, 1/8 that you will win
four dollars, and so on. Therefore the total you may expect to win
is (1 × 1/2) + (2 × 1/4) + (4 × 1/8) + · · ·. The sum of this endless
series is infinite. As a result, no matter what finite sum you paid
me in advance per game, you would win in the end if we played
enough games. This assumes that I have unlimited capital and that
we can play an unlimited number of games. If you paid, say, $1,000
for one game, the odds are high that you would come out a loser.
But this expectation is more than balanced by the fact that you have
a chance, albeit small, of winning an astronomical sum by a long,
unbroken series of tails. If I have only a finite amount of capital,
which would always be the case in actual practice, then the fair price
for a game is also finite. The St. Petersburg paradox is involved in
every “doubling” system of gambling, and its full analysis leads into
all sorts of intricate byways.

Carl G. Hempel, a leading figure in the “logical positivist” school
and a professor of philosophy at Princeton University, discov-
ered another astonishing probability paradox. Ever since he first
explained it in 1937 in the Swedish periodical Theoria, “Hempel’s
paradox” has been a subject of much learned argument among
philosophers of science, for it reaches to the very heart of scientific
method.

Let us assume, Hempel began, that a scientist wishes to inves-
tigate the hypothesis “All crows are black.” His research consists
of examining as many crows as possible. The more black crows he
finds, the more probable the hypothesis becomes. Each black crow
can therefore be regarded as a “confirming instance” of the hypoth-
esis. Most scientists feel that they have a perfectly clear notion of
what a “confirming instance” is. Hempel’s paradox quickly dispels
this illusion, for we can easily prove, with ironclad logic, that a pur-
ple cow also is a confirming instance of the hypothesis that all crows
are black! This is how it is done.

The statement “All crows are black” can be transformed, by a pro-
cess logicians call “immediate inference,” to the logically equivalent
statement, “All not-black objects are not-crows.” The second state-
ment is identical in meaning with the original; it is simply a different
verbal formulation. Obviously, the discovery of any object that con-
firms the second statement must also confirm the first one.
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Suppose then that the scientist searches about for not-black
objects in order to confirm the hypothesis that all such objects
are not-crows. He comes upon a purple object. Closer inspection
reveals that it is not a crow but a cow. The purple cow is clearly a con-
firming instance of “All not-black objects are not-crows.” It therefore
must add to the probable truth of the logically equivalent hypothe-
sis, “All crows are black.” Of course the same argument applies to a
white elephant or a red herring or the scientist’s green necktie. As
one philosopher recently expressed it, on rainy days an ornithol-
ogist investigating the color of crows could continue his research
without getting his feet wet. He has only to glance around his room
and note instances of not-black objects that are not-crows!

As in previous examples of paradoxes, the difficulty seems to lie
not in faulty reasoning but in what Hempel calls a “misguided intu-
ition.” It all begins to make more sense when we consider a simpler
example. A company employs a large number of typists, some of
whom we know to have red hair. We wish to test the hypothesis that
all these red-headed girls are married. An obvious way to do this is
to go to each red-haired typist and ask her if she has a husband. But
there is another way, and one that might even be more efficient. We
obtain from the personnel department a list of all unmarried typists.
We then visit the girls on this list to check the color of their hair. If
none have red hair then we have completely confirmed our hypoth-
esis. No one would dispute the fact that each not-married typist who
had not-red hair would be a confirming instance of the theory that
the firm’s red-headed typists are all married.

We have little difficulty in accepting this investigative procedure
because the sets with which we are dealing have a small number of
members. But if we are trying to determine whether all crows are
black, we have an enormous disproportion between the number of
crows on the earth and the number of not-black things. Everyone
agrees that checking on not-black things is a highly inefficient way
to go about the research. The question at issue is a subtler one –
whether it is meaningful to say that a purple cow is in some sense a
confirming instance. Does it add, at least in dealing with finite sets
(infinite sets lead us into murkier waters), an inconceivably small
amount to the probability of our original hypothesis? Some logi-
cians think so. Others are not so sure. They point out, for example,
that a purple cow can also be shown, by exactly the same reasoning,
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to be a confirming instance of “All crows are white.” How can an
object’s discovery add to the probable truth of two contradictory
hypotheses?

One may be tempted to dismiss Hempel’s paradox with a smile
and shrug. It should be remembered, however, that many logical
paradoxes that were long regarded as trivial curiosities proved to
be enormously important in the development of modern logic. In
similar fashion, analyses of Hempel’s paradox have already provided
valuable insights into the obscure nature of inductive logic, the tool
by which all scientific knowledge is obtained.

AFTERWORD

The birth date paradox has been generalized in many ways. I have
tried to include the more important papers in my bibliography.
William Moser’s 1984 article reports the most surprising results. It
is hard to believe, but among as few as 14 people, it is more likely
than not that two consecutive days will include at least two iden-
tical birth dates, and with as few as seven persons, seven consecu-
tive days will also include, with a probability that exceeds one-half,
at least two identical birth dates. In researching a paper on puzzles
in James Joyce’s Ulysses, I encountered a surprising birthday coin-
cidence involving Joyce and his good friend, the Irish writer James
Stephens. Joyce selected Stephens to complete Finnegans Wake in
case he (Joyce) died before finishing the book. Both men were born
on February 2, 1882.

Hempel’s paradox of confirmation theory has become the con-
troversial topic of scores of papers by philosophers and statisticians,
not to mention vigorous debates in dozens of books on scientific
method. I have tried to list the most important references in the
bibliography.

In his Studies in Deductive Logic (1884), the British logician and
economist William Stanley Jevons poses a problem about an Irish-
man accused of stealing. To counter the evidence of three witnesses
who say they saw him commit the crime, he presents thirty wit-
nesses who swear they did not see him stealing. “Where exactly lies
the error?” Jevons asks. This always struck me as similar to Hempel’s
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paradox. Is the testimony of the thirty totally irrelevant? Or does
it add an infinitesimal amount to the plausibility of the Irishman’s
claim of innocence? Under some circumstances – for example, if
one of the thirty saw the Irishman many miles from the scene of the
crime at the time of the theft – it would surely add to his credibility.

The literature on Hempel’s paradox, which goes to the heart of
defining precisely what is a confirming instance of a conjecture, is
now vast. I have tried to include the highlights in my bibliography.
Here I content myself with quoting my parody of Gelett Burgess’s
famous quatrain about a purple cow:

I never saw a purple cow,
But if I ever see one,
Will the probability crows are black
Have a better chance to be 1?

The paradox of the second ace must be stated with extreme
care. Both Ball and Littlewood, among others, word the problem
so vaguely that it can’t be answered. Two provisos must be met to
avoid ambiguity. The player who makes the statements must be des-
ignated in advance, and the suit of the ace must also be specified. If
just any player who holds an ace is allowed to say “I have an ace,”
the probability of his holding another ace is unaffected by his nam-
ing the ace in his hand. Even if a player is specified in advance, if he
is allowed to say “I have an ace” without naming the suit, again the
probability of his having a second ace is unchanged. In outlining the
problem, I met both provisos by calling the player “you” and spec-
ifying that the ace was the Ace of Spades. According to Littlewood,
this confusing problem goes back to “about 1911.”

Note that the probabilities I cited refer to the probabilities of
there being at least one other ace. The probabilities are not the same
if one is concerned with exactly one other ace.

Norman Gridgeman, a Canadian statistician, called my attention
to the fact that no less eminent a physicist than Erwin Schrödinger,
a major architect of quantum mechanics, presented the problem in
a 1947 paper. Schrödinger said he first heard of the problem in 1938
from J. H. C. Whitehead, a British mathematician and nephew of
Alfred North Whitehead, but according to Littlewood the problem
goes back to “about 1911.”
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Schrödinger met the two provisos as follows: A hand of whist is
dealt, but only one player is allowed to pick up his hand. He is asked
if he has at least one ace and he truthfully replies, “Yes.” He is then
asked, “Have you the Ace of Spades?” Again he answers, “Yes.” What
is the probability that he has at least one other ace? After the first
“Yes,” the probability is .369+. After the second yes it rises to .561+.
How can naming the ace raise the probability from a little more than
one-third to more than one-half? Here is Schrödinger’s answer:

It would, of course, have no significance if we had asked A: what
is the suit of the ace or one of the aces you are holding, and he
had answered: spades. But the fact that among his aces was the one
we chose to ask increases the likelihood of his holding more than
one. Indeed, the more aces he has, the greater the likelihood of his
answering yes to our second question. If a bet were intended, one
might call it a rather cunning question.

Gridgeman pointed out in a letter that if the player answers the
second question by saying “No, the Ace of Spades is not in my hand,”
this lowers the probability of two or more aces to .262+, or slightly
better than 1/4.

Observe that all the probabilities cited here refer to the probabil-
ity of at least one other ace. As R. A. Epstein pointed out in a let-
ter (Scientific American, July 1957), if one is concerned with exactly
one more ace, the values are 8,892

20,825 = .426+ for the specified ace,
and 2,223

7,249 = .306+ for the unspecified ace. “Also of interest,” wrote
Epstein, “are the pertinent probabilities if the color of the ace is
known. For this condition the probability of one or more aces is
.502+, while the probability of one more ace is .403+. Rather oddly,
these figures are closer to the specified than the unspecified case.”

In a later letter, Gridgeman suggested that the general problem
could be usefully displayed by a three-dimensional Venn diagram:

You could have, say, a cube of unit volume to represent the total sam-
ple space (number of possible deals) with, inside, four equal spheres
disposed at the corners of a regular tetrahedron, each to be of such
a size as to represent the probability of a hand with one ace in it. We
label them C, D, H, & S. (Actually, the diagram couldn’t be drawn to
scale). Now the tetrahedron should be of such a size that the spheres
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overlap at the center of each edge (so that the overlaps would repre-
sent the probabilities of each of the six possible double-ace hands).
At the center of each face the triple overlap of the spheres will rep-
resent the probabilities of each of the four possible triple-ace hands.
And at the dead center of the tetrahedron all four spheres overlap to
represent the probability of a hand with all four aces in it. Get the
idea? The probabilities of all kinds of combinations could then be
shown. For example, the answer to the question: “If a hand is known
to contain two aces, what is the probability of its containing a third?”
Or: “If a hand is known to contain two aces, one of which is the ace
of spades, what is the probability of its also containing the ace of
hearts?”

The problem of the second child also has to be stated with great
precision to avoid ambiguity. In Chapter 14 of Book 2, I repeat the
problem; I then state it more precisely in Chapter 19.
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“Le problème de la vérité.” Carl Hempel in Theoria 3: 206–246.
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CHAPTER SIX

The Icosian Game and the Tower of Hanoi

to a mathematician few experiences are more exciting than the
discovery that two seemingly unrelated mathematical structures
are really closed linked. Recently D. W. Crowe of the University
of British Columbia made such a discovery concerning two pop-
ular nineteenth-century puzzles: the Icosian Game and the Tower
of Hanoi. We shall first describe each puzzle and then show the
startling manner in which they are related.

The Icosian Game was invented in the 1850s by the illustrious
Irish mathematician Sir William Rowan Hamilton. It was intended
to illustrate a curious type of calculus that he had devised and
that was similar in many ways to his famous theory of quaternions
(the forerunner of modern vector analysis). The calculus could be
applied to a number of unusual path-tracing problems on the sur-
faces of the five Platonic solids, particularly the icosahedron and
dodecahedron. Hamilton called it the Icosian calculus, though the
game was actually played on the edges of a dodecahedron. In 1859
Hamilton sold the game to a dealer in London for 25 pounds; it was
then marketed in several forms in England and on the Continent.
This was the only money Hamilton ever received directly, his biog-
rapher tells us, for a discovery or publication.

Hamilton suggested a variety of puzzles and games that could
be played on the dodecahedron, but the basic puzzle is as follows.
Start at any corner on the solid (Hamilton labeled each corner with
the name of a large city); then by traveling along the edges make
a complete “trip around the world,” visiting each vertex once and
only once, and return to the starting corner. In other words, the path
must form a closed circuit along the edges, passing once through
each vertex.
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Figure 24. Dodecahedron (left) is punctured (dot) and stretched flat (right). The
flat network, which is not in to scale with the solid, is topologically identical with
its edges.

If we imagine that the surface of a dodecahedron is made of rub-
ber, we can puncture one of its faces and stretch it open until it
lies in a plane. The edges of the surface will now comprise the net-
work shown in Figure 24. This network is topologically identical with
the network formed by the edges of the solid dodecahedron, and of
course it is much more convenient to handle than the actual solid.
The reader may enjoy tackling the round-trip problem on this net-
work, using counters to mark each vertex as it is visited.

On a dodecahedron with unmarked vertices there are only two
Hamiltonian circuits that are different in form, one a mirror image
of the other. But if the corners are labeled, and we consider each
route “different” if it passes through the 20 vertices in a different
order, there are 30 separate circuits, not counting reverse runs of
these same sequences. Similar Hamiltonian paths can be found on
the other four Platonic solids and on many, but not all, semiregular
polyhedrons.

The familiar Tower of Hanoi was invented by the French math-
ematician Edouard Lucas and sold as a toy in 1883. It originally
bore the name of “Prof. Claus” of the College of “Li-Sou-Stian,” but
these were soon discovered to be anagrams for “Prof. Lucas” of the
College of “Saint Louis.” Figure 25 depicts the toy as it is usually
made. The problem is to transfer the tower of eight disks to either
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Figure 25. The Tower of Hanoi.

of the two vacant pegs in the fewest possible moves, moving one
disk at a time and never placing a disk on top of a smaller one.

It is not hard to prove that there is a solution regardless of how
many disks are in the tower and that the minimum number of moves
required is expressed by the formula 2n − 1 (n being the number of
disks). Thus 3 disks can be transferred in 7 moves, 4 in 15, 5 in 31 and
so on. For the 8 disks shown in Figure 25, 255 moves are required.
The original description of the toy called it a simplified version of a
mythical Tower of Brahma in a temple in the Indian city of Benares.
This tower, the description read, consists of 64 disks of gold, now
in the process of being transferred by the temple priests. When
they complete their task, it was said, the temple will crumble into
dust and the world will vanish in a clap of thunder. The disappear-
ance of the world may be questioned, but there is little doubt about
the crumbling of the temple. The formula 264 − 1 yields the 20-
digit number 18,446,744,073,709,551,615. Assuming that the priests
worked night and day, moving one disk every second, it would take
them many thousands of millions of years to finish the job.

(The aforementioned number, by the way, is not a prime, but
if we increase the number of disks to 89, 107 or 127, the number
of moves required to transfer them in each case is a prime. They
are examples of the so-called Mersenne numbers: primes having
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Figure 26. A Hamiltonian path is traced along the edges of a cube at left. The
cube has the coordinates A, B, and C; the path follows them in the order ABA-
CABA. At right a Hamiltonian path is traced along the edges of a four-dimensional
cube projected in three dimensions. This cube has the coordinates A, B, C, and
D; the path follows them ABACABADABACABA. This corresponds to the order of
transferring four disks in the Tower of Hanoi.

the form of 2n − 1. Lucas himself was the first man to verify that
2127 − 1 was a prime. This gargantuan 39-digit number was the
largest known prime until 1952, when a large electronic computer
was used to find five higher Mersenne primes. Forty-four Mersenne
primes are known. The forty-fourth and largest, 232582657 − 1, was
proved prime in 2006. It has 9,808,358 digits.

A Tower of Hanoi puzzle is easily made by cutting eight cardboard
squares of graduated sizes (or using playing cards from the ace to
the eight) and moving them among three spots on a piece of paper.
If the spots form a triangle, the following simple procedure will solve
the puzzle for any number of “disks.” Transfer the smallest disk on
every other play, always moving it around the triangle in the same
direction. On the remaining plays, make the only transfer possible
that does not involve the smallest disk.

How is this puzzle related to Hamilton’s game? To explain the
connection we must first consider a tower of three disks only, label-
ing the disks, from top to bottom, A, B, and C. If we follow the pro-
cedure given above, we solve the puzzle by moving the disks in the
following order: ABACABA.

Let us now label with A, B, and C the three coordinates of a reg-
ular hexahedron, commonly called a cube (see illustration at left of
Figure 26). If we trace a path along the edges of the cube, choosing
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the coordinates in the order ABACABA, the path will form a Hamil-
tonian circuit! Crowe saw that this could be generalized as follows:
The order of transferring n disks in the Tower of Hanoi puzzle corre-
sponds exactly to the order of coordinates in tracing a Hamiltonian
path on a cube of n dimensions.

An additional illustration will make this clear. Although we can-
not make a model of a four-dimensional cube (called a hypercube
or tesseract), we can project the network of its edges in the three-
dimensional model depicted at right of Figure 26. This network is
topologically identical to the network of edges on a hypercube. We
label its coordinates A, B, C, and D, the D coordinate being repre-
sented by the diagonal lines.

The order for transferring a tower of four disks is ABACABADABA-
CABA. When we traverse the hypercube model, making our turns
correspond to this sequence, we find ourselves tracing a Hamilto-
nian path. By the same token, five disks transfer in an order cor-
responding to a Hamiltonian circuit on a five-dimensional hyper-
cube, six disks correspond to a six-dimensional hypercube, and
so on.

ADDENDUM

Proving that n disks in the Tower of Hanoi can be moved to another
peg in 2n − 1 steps is not difficult and is an excellent classroom exer-
cise in mathematical induction. (See Mathematics Teacher, 1951,
Vol. 44, page 505; and 1952, Vol. 45, page 522.) The puzzle is eas-
ily generalized to any number of pegs. (See Henry Ernest Dudeney’s
The Canterbury Puzzles, 1907, Problem No. 1; and the American
Mathematical Monthly, March 1941, Problem No. 3918.)

The isomorphism of the Tower of Hanoi’s solution and the Hamil-
tonian path on cubes and hypercubes is perhaps not so startling
when we realize that in both cases the sequence of moves is a pat-
tern familiar to anyone working with binary computers. We first
write the binary numbers from 1 to 8 and label the columns A, B,
C, D as shown in Figure 27. We then write opposite each row the
letter that identifies the “1” that is farthest to the right on each row.
The sequence of these letters from top down will be the pattern in
question.
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Figure 27. Table of binary numbers.

This pattern is encountered frequently in mathematical puzzles.
Cards for guessing a thought-of number and an ancient mechani-
cal puzzle called the Chinese rings are two additional examples. The
most familiar instance of the pattern is the sequence in the sizes of
marks on a one-inch segment of an ordinary ruler (see Figure 28).
The pattern results, of course, from successive binary divisions of
the inch into halves, quarters, eighths, and sixteenths.

POSTSCRIPT

Finding Hamiltonian paths on a graph can be the basis of many
puzzles. Here (Figure 29) is one from Mark Lynch’s article “Creat-
ing Recreational Hamiltonian Cycle Problems,” in the Mathematical
Gazette, July 2004, Vol. 88, pp. 215–218.

Figure 28. Binary divisions of an inch.
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Figure 29. (Artist: Harold Jacobs)

There is only one Hamiltonian cycle. I won’t spoil the pleasure of
finding it by giving the solution.

The Tower of Hanoi can be solved by applying what is called a
Gray code. See the chapter on binary Gray codes in my Book 11
for the tower’s isomorphism with a Chinese rings puzzle, and other
mechanical puzzles.

The Tower of Hanoi has been marketed many times around the
world and in many different forms. An unusual version, sold in the
United States in 1974, consisted of cardboard forms that folded to
make nine pyramids of nine different sizes. One was told to hide a
small object, such as a ring or coin, under the smallest pyramid and
then to stack the other eight pyramids on top. The task was to obtain
the object by moving the pyramids back and forth.

Two-person games have been based on the puzzle. Harry Weller-
ton, in the British magazine Games and Puzzles (December 1976),
proposed this one. The board is a row of seven squares. Each player
has, at one end of the row, five disks stacked in sequential order,
largest disk on the bottom. The stacks are of two different colors.
Players alternate moving a disk to another square. A disk may be
moved to an empty square or to another disk (of either color) pro-
vided it is larger than the disk moved. A disk arriving on the oppo-
nent’s cell cannot be moved again. The winner is the first to get all
his disks, in proper order, on the opponent’s starting cell.

Many readers rediscovered an old technique for solving the tra-
ditional puzzle. If disks at even positions in the initial stack are one
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color, and those in odd positions are of another color, the solving
procedure is simple. Disks of one color go around the triangle in one
direction. Those of the other color go the other way. The procedure
is described by R. E. Allardice and A. Y. Fraser in “Le Tour d’ Hanoi,”
Proceedings of the Edinburgh Mathematical Society, Vol. 2, 1884,
pp. 50–53.

The Tower of Hanoi obviously generalizes to n disks and k pegs.
The task is to transfer the disks in the smallest number of moves
to another peg. Henry Dudeney considered the k = 4 case in The
Weekly Dispatch (May 25, 1902), and the k = 5 case in the same
newspaper for March 15, 1903. He deals with the general problem in
The Canterbury Puzzles where he gives a recursive procedure for cal-
culating what he believed to be the minimum number of moves for
any n, provided n is a triangular number when k = 4, or a pyramidal
number when k = 5. For example, consider four pegs and ten disks
(10 is a triangular number). The minimum number of moves, 49,
is considerably less than the 210 − 1 = 1,023 moves needed if there
are only three pegs. By adding one more peg, the priests at Benares
could transfer all 64 disks in just a few hours!

The general case was posed as Problem 3918 in the American
Mathematical Monthly in 1939, and two partial solutions were given
in Vol. 48, 1941, pp. 216–219. Since then many mathematicians have
struggled with the general task, including Donald Knuth, Ashok
Chandra, Don Oliver, and Glen Manacher. All confirmed Dudeney’s
formulas. Unfortunately, all make the following assumption. Disks
that are adjacent on a peg are said to have a “gap” if they are not
consecutive in size. The assumption is that any solution allowing
gaps would be longer than one without gaps.

No shorter solution has been found for any values of n and k that
violate this assumption, but the general problem remains unsolved
in spite of many claims to the contrary. What is required is a proof
that no solution violating the assumption is shorter. Even the case
of k = 4 is unsolved for all but small values of n.

The Tower of Hanoi is discussed in Concrete Mathematics
(Addison-Wesley, 1994), by Ronald Graham, Donald Knuth, and
Oren Patashnik, and Knuth will consider the general problem in the
forthcoming next volume in his famous series on The Art of Com-
puter Programming.
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The Tower of Hanoi has been modified by other constraints. R. S.
Scorer, P. M. Grundy, and C. A. B. Smith, in a 1944 paper, proposed
putting the pegs in a straight line and not allowing moves from one
end peg to the other. With this restriction, 3n − 1 moves are needed
to transfer the disks from one end to the other. The sequence of
moves corresponds to a ternary Gray code. After 3n−1

2 moves, the
stack is halfway home on the middle peg.

Dozens of other variants have been proposed, such as moving
the pegs around a triangle only in one direction. Scorer, Grundy,
and Smith showed that 3n − 1 moves suffice in this case as well,
when k = 4 and when the stack is supposed to move two steps. For
example, if there are n = 3 disks numbered 0, 1, 2 from smallest to
largest, their 26-move solution is 00100100 2 00100100 2 00100100.
But Knuth noticed in 1975 that this isn’t optimum. He found the 18-
move solution 000112 012010 101000. (This incidentally must be the
best, because there must be at least 4 more 0’s than 1’s and 4 more
1’s than 2’s.)

The cyclic problem, like the unrestricted problem, remains
unsolved for general n when k > 3, although the complete solu-
tion is known in the three-peg case. M. D. Atkinson proved in 1981
that for n disks and k = 3 the minimum number of clockwise moves
required is exactly

(1 + √
3)

n+1 − (1 − √
3)

n+1

2
√

3
− 1

For n = 1 through 7(k = 3) the minimum number of clockwise
moves for transferring n disks to the next adjacent peg clockwise
are 1, 5, 15, 43, 119, 327, and 895. For clockwise transferring to the
next adjacent peg counterclockwise, 2, 7, 21, 59, 163, 447, and 1,223
moves are required.
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CHAPTER SEVEN

Curious Topological Models

Why did the chicken cross the Moebius strip?
Answer: To get to the same side.

as many readers of this book are aware, a Moebius band is a
geometrical curiosity that has only one surface and one edge. Such
figures are the concern of the branch of mathematics called topol-
ogy. People who have a casual interest in mathematics may get the
idea that a topologist is a mathematical playboy who spends his
time making Moebius bands and other diverting topological mod-
els. If they were to open any recent textbook of topology, they would
be surprised. They would find page after page of symbols, seldom
relieved by a picture or diagram. It is true that topology grew out of
the consideration of geometrical puzzles, but today it is a jungle of
abstract theory. Topologists are suspicious of theorems that must be
visualized in order to be understood.

Serious topological studies nonetheless produce a constant flow
of weird and amusing models. Consider, for example, the dou-
ble Moebius band. This is formed by placing two strips of paper
together, giving them a single half-twist as if they were one strip, and
joining their ends as shown in Figure 30.

We now have what appears to be two nested Moebius bands.
Indeed, you can “prove” that there are two separate bands by
putting your finger between the bands and running it all the way
around them until you come back to the point at which you started.
A bug crawling between the bands could circle them indefinitely,
always walking along one strip with the other strip sliding along its
back. At no point would he find the “floor” meeting the “ceiling.”

73



74 Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi

Figure 30. Double Moebius band is made by placing two strips of paper together
(left), giving both of them a half-twist and joining their ends as indicated at right.
(Artist: James Egleson.)

An intelligent bug would conclude that he was walking between the
surfaces of two separate bands.

Suppose, however, that the bug made a mark on the floor, and
circled the bands until he reached the mark again. It would find
the mark not on the floor but on the ceiling, and it would require
a second trip around the bands to find it on the floor again! The
bug would need considerable imagination to comprehend that both
floor and ceiling were one side of a single strip. What appears to be
two nested bands is actually one large band! Once you have opened
the model into the large band, you will find it a puzzling task to
restore it to its original form.

When the band is in its double form, two separate edges of it
run parallel to each other; they circle the model twice. Imagine that
these edges are joined and that the band is made of thin rubber. You
would then have a tube that could be inflated to make a torus (the
topologist’s term for the surface of a doughnut). The joined edges
would form a closed curve that coiled twice around the torus. This
means that a torus can be cut along such a curved line to form the
double Moebius band.

The double band is identical, in fact, with a single band that is
given four half-twists before its edges are joined. It is possible to cut
a torus into a band with any desired even number of half-twists, but
impossible to cut it so as to produce bands with an odd number of
such twists. This is because the torus is a two-sided surface and only
bands with an even number of half-twists are two-sided. Although
two-sided surfaces can be made by cutting one-sided ones, the
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Figure 31. Moebius band with triangular edge was devised by Bryant Tucker-
man. If the figure at bottom is redrawn, preferably on a larger scale, the poly-
hedral model at upper right may be assembled as follows. First, cut out the fig-
ure. Second, fold it “down” along the solid lines. Third, fold it in the opposite
direction along the broken lines. Fourth, by applying paste to the four tabs, join
edges A and A, B and B, C and C, and D and D. The heavy lines in the finished
polyhedron trace the triangular boundary of the Moebius surface. (Artist: James
Egleson.)

reverse is not possible. If we wish to obtain one-sided bands (bands
with an odd number of half-twists) by cutting a surface without
edges, we must resort to cutting a Klein bottle. The Klein bottle is a
closed one-sided surface with no edges; it can be bisected into two
Moebius strips that are mirror images of each other.

The simple Moebius band is made by giving a strip one half-twist
before joining the ends. Can the band somehow be stretched until
this edge is a triangle? The answer is “yes.” The first man to devise
such a model was Bryant Tuckerman, one of the four pioneers in
the art of folding flexagons (see Chapter 1). Figure 31 shows how a
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piece of paper can be cut, folded, and pasted to create Tuckerman’s
model.

Surfaces may not only have one or two sides; they may also differ
topologically in the number and structure of their edges. Such traits
cannot be altered by distorting the surface; hence they are called
topological invariants. Let us consider surfaces with no more than
two edges, and edges that are either simple closed curves or in the
form of an ordinary single knot. If the surface has two edges, they
may be independent of each other or linked. Within these limits, we
can list the following 16 kinds of surfaces (excluding edgeless sur-
faces such as the sphere, the torus, and the Klein bottle):

ONE-SIDED, ONE-EDGED
1. Edge is a simple closed curve.
2. Edge is knotted.

TWO-SIDED, ONE-EDGED
3. Edge is a simple closed curve.
4. Edge is knotted.

ONE-SIDED, TWO-EDGED
5. Both edges are simple closed curves, unlinked.
6. Both edges are simple closed curves, linked.
7. Both edges are knotted, unlinked.
8. Both edges are knotted, linked.
9. One edge is simple; one knotted, unlinked.

10. One edge is simple; one knotted, linked.
TWO-SIDED, TWO-EDGED
11. Both edges are simple closed curves, unlinked.
12. Both edges are simple closed curves, linked.
13. Both edges are knotted, unlinked.
14. Both edges are knotted, linked.
15. One edge is simple; one knotted, unlinked.
16. One edge is simple; one knotted, linked.

Paper models are easily constructed to illustrate examples of
each of these 16 surfaces. Models for surfaces 1 through 12 are
depicted in Figure 32. Models of the remaining four surfaces are
shown in Figure 33.

When some of these models are cut with scissors in certain ways,
the results are startling. As almost everyone who has played with
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Figure 32. Paper models of surfaces 1 to 12. (Artist: James Egleson.)

a Moebius band knows, cutting the band in half lengthwise does
not produce two separate bands, as one might expect, but one large
band. (The large band has four half-twists; thus it can be made up
into the double Moebius band described earlier.) Not so well-known
is the fact that if you start the cut a third of the way between one
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Figure 33. Paper models of surfaces 13 to 16. (Artist: James Egleson.)

edge and the other, and cut until you return to the starting point,
the Moebius band opens into a large band linked with a smaller
one.

Cutting surface 12 in half yields two interlocked bands of the
same size, each exactly like the original one. Cutting surface 2 in half
results in a large band that has a knot in it. This latter stunt was the
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Figure 34. Interlocked curves that can be separated without passing one through
an opening in the other. The curves at the top may be separated by passing the
twisted curve through itself at A. (Artist: James Egleson.)

subject of a booklet that enjoyed a wide sale in Vienna in the 1880s.
The booklet revealed the secret of forming a knot in a cloth band
without resorting to magical trickery.

In saying that two edges are “linked,” we mean linked in the man-
ner of two links in a chain. To separate the links, it is necessary to
open one link and pass the other through the opening. It is possi-
ble, however, to interlock two closed curves in such a manner that
in order to separate them it is not necessary to pass one through an
opening in the other. The simplest way to do this is shown by the
upper curves in Figure 34. These curves can be separated by passing
one band through itself at point A.

The three closed curves at the bottom of the illustration also are
inseparable without being linked. If you remove any one curve, the
other two are free; if you link any pair of curves, it frees the third one.
This structure, by the way, is topologically identical with the familiar
three-ring trademark of a well-known brand of beer. These rings are
sometimes called Borromean rings because they formed the coat of
arms for the Renaissance Italian family of Borromeo. I know of no
paper model of a single surface, free from self-intersection, that has
two or more edges locked without being linked, but perhaps a clever
reader can succeed in constructing one.
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ADDENDUM

An interesting model of the double Moebius band can be made of
rigid plastic. This makes it easy for someone to run his finger all the
way around between the “two” bands.

Mel Stover of Winnipeg wrote that he made a model in flexible
white plastic and then inserted a strip of red plastic between “them.”
Since the red strip is clearly seen to be at all points between what
appear to be two separate bands, the surprise is heightened when
the red band is slipped out and the white strip shown to be a single
band. The red strip must have open ends that are overlapped rather
than joined; otherwise, it will be linked to the white band and can-
not be slipped out.

The red strip in Stover’s model, when it is placed within the white
strip, assumes the form of a Moebius band. Every non-orientable
(one-sided) surface can be covered in a similar fashion by what has
been called a “two-sheeted” bilateral surface. For example, the Klein
bottle can be covered completely by a torus, half of which must
be turned inside out. Like the Moebius strip covering, this surface
appears to be two separate surfaces, one within the other. If you
puncture it at any point, you find the inner surface separated from
the outer by the surface of the Klein bottle, yet the inner and outer
surfaces are parts of the same torus. (See Geometry and the Imag-
ination by David Hilbert and S. Cohn-Vossen, English translation,
1956, page 313.)

POSTSCRIPT

Modern topology, which began with the work of Poincar, has
become one of the most active branches of today’s mathemat-
ics. The number of textbooks is now in the hundreds. More than
15 paperbacks on topology are available as Dover reprints. Topol-
ogy has become increasingly essential for understanding parti-
cle physics, especially superstring theory or M-theory as it is now
called.

The Moebius band and the closely related Klein bottle turn up in
many later Scientific American columns, especially in Chapter 2 of
Book 5, and Chapter 9 of Book 7. Solid analogs of Moebius bands
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are treated in Chapter 5 of Book 14. A collection of my short stories
titled The No-Sided Professor (Prometheus, 1987) reprints a tale of
the same title. It tells how a topologist discovered a way to fold and
twist a piece of paper so it becomes no-sided and vanishes with a
pop. On the Borromean rings see Book 4, Chapter 2.
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CHAPTER EIGHT

The Game of Hex

it is something of an occasion these days when someone invents a
mathematical game that is both new and interesting. Such a game is
Hex, introduced 15 years ago at Niels Bohr’s Institute for Theoretical
Physics in Copenhagen. It may well become one of the most widely
played and thoughtfully analyzed new mathematical games of the
century.

Hex is played on a diamond-shaped board made up of hexagons
(see Figure 35). The number of hexagons may vary, but the board
usually has 11 on each edge. Two opposite sides of the diamond are
labeled “black”; the other two sides are “white.” The hexagons at
the corners of the diamond belong to either side. One player has a
supply of black pieces; the other, a supply of white pieces. The play-
ers alternately place one of their pieces on any one of the hexagons,
provided the cell is not already occupied by another piece. The
objective of Black is to complete an unbroken chain of black pieces
between the two sides labeled “black.” White tries to complete a
similar chain of white pieces between the sides labeled “white.”

The chain may freely twist and turn; an example of a winning
chain is shown in Figure 35. The players continue placing their
pieces until one of them has made a complete chain. The game can-
not end in a draw, because one player can block the other only by
completing his own chain. These rules are simple, yet Hex is a game
of surprising mathematical subtlety.

Hex was invented by Piet Hein, who must surely be one of the
most remarkable men in Denmark. Piet Hein began his career as a
student at the Institute for Theoretical Physics; then his industrial
inventions switched him to engineering, where he remained until
the Germans invaded Denmark in 1940. Because Piet Hein was
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Figure 35. A winning chain for Black on a Hex board with 11 hexagons on each
side. (Artist: Amy Kasai.)

the head of an anti-Nazi group, he was forced to go underground.
After the war, he became well-known as a writer on scientific and
other topics for Politiken, the leading Danish newspaper. He is also
known, under the pseudonym of Kumbel, as the author of numer-
ous volumes of epigrammatical poems. These books have sold in
the millions.

The game of Hex occurred to Piet Hein while he was contem-
plating the famous four-color theorem of topology. (The theorem,
proved in 1976, is that four colors are sufficient to make any map
so that no two countries of the same color have a common bound-
ary.) Piet Hein introduced the game in 1942 with a lecture to stu-
dents at the Institute. On December 26 of that year, Politiken pub-
lished an account of the game; it soon became enormously pop-
ular in Denmark under the name of Polygon. Pads on which the
game could be played with a pencil were sold, and for many months
Politiken ran a series of Polygon problems, with prizes for the best
solutions.

In 1948 John F. Nash, then a graduate student in mathematics at
Princeton University (later a professor at Massachusetts Institute of
Technology and one of the nation’s outstanding authorities on game
theory), independently reinvented the game. It quickly captivated
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Figure 36. (Artist: Amy Kasai.)

students of mathematics both at the Institute for Advanced Study
and Princeton. The game was commonly called either Nash or John,
the latter name referring mainly to the fact that it was often played
on the hexagonal tiles of bathroom floors. It did not acquire the
name Hex until 1952 when a version of the game was issued under
that title by Parker Brothers, Inc.

Readers who would like to try Hex are advised to make photo-
copies of the board. The game can be played on these sheets by
marking the hexagons with circles and crosses. If you should pre-
fer to play with removable pieces on a permanent board, a large
one can easily be drawn on heavy cardboard or made by cementing
together hexagonal tiles. If the tiles are big enough, ordinary check-
ers make convenient pieces.

One of the best ways to learn the subtleties of Hex is to play the
game on a field with a small number of hexagons. When the game
is played on a 2 × 2 board (four hexagons), the player who makes
the first move obviously wins. On a 3 × 3 board the first player wins
easily by making his first move in the center of the board (see Fig-
ure 36). Because Black has a double play on both sides of his piece,
there is no way in which his opponent can keep him from winning
on his third move.

On a 4 × 4 board things begin to get complicated. The first player
is sure to win if he immediately occupies any one of the four cells
numbered in Figure 37. If he makes his opening play elsewhere, he
can always be defeated. An opening play in cell 2 or 3 ensures a win
on the fifth move; an opening play in cell 1 or 4, a win on the sixth
move.

On a 5 × 5 board it can still be shown that if the first player
immediately occupies the hexagon in the center, he can win on his
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Figure 37. (Artist: Amy Kasai.)

seventh move. On larger fields, the analysis becomes enormously
difficult. Of course the standard 11 × 11 board introduces such an
astronomical number of complications that a complete analysis
seems beyond the range of human computation.

Game theorists find Hex particularly interesting for the following
reason. Although no “decision procedure” is known that will ensure
a win on a standard board, there is an elegant reductio ad absurdum
“existence proof” that there is a winning strategy for the first player
on a field of any size! (An existence proof merely proves the exis-
tence of something without telling you how to go about finding it.)
The following is a highly condensed version of the proof (it can be
formulated with much greater rigor) as it was worked out in 1949 by
John Nash:

1. Either the first or second player must win; therefore, there
must be a winning strategy for either the first or second
player.

2. Let us assume that the second player has a winning strat-
egy.

3. The first player can now adopt the following defense. He
first makes an arbitrary move. Thereafter he plays the win-
ning second-player strategy assumed initially. In short, he
becomes the second player, but with an extra piece placed
somewhere on the board. If in playing the strategy he is
required to play on the cell where his first arbitrary move
was made, he makes another arbitrary move. If later he is
required to play where the second arbitrary move was made,
he makes a third arbitrary move, and so on. In this way, he
plays the winning strategy with one extra piece always on the
field.
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Figure 38. Three problems of Hex. (Artist: Amy Kasai.)

4. This extra piece cannot interfere with the first player’s imi-
tation of the winning strategy, for an extra piece is always
an asset and never a handicap. Therefore the first player can
win.

5. Since we have now contradicted our assumption that there
is a winning strategy for the second player, we are forced to
drop this assumption.

6. Consequently, there must be a winning strategy for the first
player.

There are a number of variations on the basic theme of Hex,
including a version in which each player tries to force his oppo-
nent to make a chain. According to a clever proof devised by Robert
Winder, a graduate student of mathematics at Princeton, the first
player can always win this game on a board that has an even num-
ber of cells on a side, and the second player can always win on a
board with an odd number.

After the reader has played Hex for a while, he may wish to tackle
three problems devised by Piet Hein. These are set forth in the three
illustrations of Figure 38. The objective in all three problems is to
find the first move that will ensure a win for White.

ADDENDUM

Hex can be played on several different types of fields that are topo-
logically equivalent to the fields of hexagons. A field of equilat-
eral triangles, for example, may be used, placing the counters on
the intersections. An ordinary checkerboard is isomorphic with a
Hex field if one assumes that the squares connect diagonally in
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Figure 39. How second player pairs the cells to win on a “short” board. (Artist:
Amy Kasai.)

one direction only (say, NE and SW, but not NW and SE). Both
boards seem to me less satisfying for actual play than the mosaic
of hexagons.

Several shapes for a Hex field other than the diamond have been
proposed. For example, John Milnor, of Princeton University, sug-
gested a field in the shape of an equilateral triangle. The winner is
the first to complete a chain connecting all three sides of the tri-
angle. Corner cells are regarded as belonging to both their adjacent
sides. Nash’s proof of first-player-win applies with equal force to this
variant.

To counter the strong advantage held by the first player in the
standard game of Hex, several proposals have been made. The first
player may be forbidden to open on the short diagonal. The win-
ner may be credited with how few moves it took him to win. The
first player opens with one move, but thereafter each player has two
moves per turn.

It is tempting to suppose that on an n by n + 1 board (e.g., a
10 × 11), with the first player taking the sides that are farthest apart,
the relative advantages of the two players might be made more
equal. Unfortunately, Nash discovered a simple strategy that gives
the second player a certain win. The strategy involves a reflection
symmetry along a central axis. If you are the second player, you
imagine the cells to be paired according to the scheme indicated
by the letters in Figure 39. Whenever your opponent plays, you play
on the other cell with the same letter. Owing to the shorter distance
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Figure 40. (Artist: Amy Kasai.)

between your two sides of the board, it is impossible for you to
lose!

A few words about general strategy in playing Hex. Quite a num-
ber of readers wrote that they were disappointed to discover that
the first player has an easy win simply by taking the center cell,
then extending a chain of adjacent cells toward his two sides of the
board. They argued that since he always has a choice of two cells
for the next link in the chain, it would be impossible to block him.
Of course they failed to play long enough to discover that chains
can be blocked by taking cells that are not adjacent to the ends of
the chain. The game is much subtler than it first appears. Effective
blocking often involves plays that seem to have no relationship to
the chain that is being blocked.

A more sophisticated strategy is based on the following proce-
dure. Play first in the center; then seek to form on each of your sides
a chain of separated links that are either diagonal or vertical, like the
two chains shown in Figure 40. If your opponent checks you verti-
cally, you switch to a diagonal play, and if he checks you diagonally,
you switch to vertical. Of course, once you succeed in joining your
two sides with a disconnected chain on which each missing link is a
double play, you cannot be blocked. This is a good strategy to play
on novices, but it can be countered by proper defensive moves.

Still another strategy provided the basis of a Hex machine con-
structed by Claude Shannon and E. F. Moore, both at that time on
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Figure 41. Artist: Amy Kasai.

the staff of Bell Telephone Laboratories. Here is Shannon’s descrip-
tion of the device from his article on “Computers and Automata” in
the Proceedings of the Institute of Radio Engineers, Vol. 41, October
1953:

After a study of this game, it was conjectured that a reasonably good
move could be made by the following process. A two-dimensional
potential field is set up corresponding to the playing board, with
white pieces as positive charges and black pieces as negative charges.
The top and bottom of the board are negative and the two sides pos-
itive. The move to be made corresponds to a certain specified saddle
point in this field.

To test this strategy, an analog device was constructed, consist-
ing of a resistance network and gadgetry to locate the saddle points.
The general principle, with some improvements suggested by expe-
rience, proved to be reasonably sound. With first move, the machine
won about seventy per cent of its games against human opponents.
It frequently surprised its designers by choosing odd-looking moves
that, on analysis, proved sound. We normally think of computers as
expert at long, involved calculations and poor in generalized value
judgments. Paradoxically, the positional judgment of this machine
was good; its chief weakness was in end-game combinatorial play.
It is also curious that the Hex-player reversed the usual computing
procedure in that it solved a basically digital problem by an analog
machine.

As a joke, Shannon also built a Hex machine that took the sec-
ond move and always won, much to the puzzlement of Hexperts
who knew of the first player’s strong advantage. The board was short
in one direction (7 × by 8), but mounted on a rectangular box in
such a way that the inequality of sides was disguised. Few players
were suspicious enough to count the cells along two edges. The
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machine, of course, played the winning reflection strategy previ-
ously described. It could have been constructed to respond instantly
to moves, but thermistors were used to slow down its operation. It
took between one and eight seconds to reach a decision, thus con-
veying the impression that it was making a complicated analysis of
the configuration on the field!

ANSWERS

Solutions to the three Hex problems given in Figure 38 are shown in
Figure 41. A complete analysis of alternate lines of play is too lengthy
to give; only the one correct first move for White is indicated by the
crosses.

Several readers expressed a belief that in the third problem White
could also win by playing on cell 22 (begin at the extreme left and
number the rows up and to the right from 1 to 25). Black, however,
can defeat this by the following ingenious line of play:

White Black

22 19
18 10

5 9
4 8
3 7

White’s moves are forced in the sense that Black has a quicker win
unless White makes the indicated move. At the close of the above
moves, Black will have a chain with a double play at both ends and
a double play to close one break within the chain, so there is no way
White can prevent the win.

AFTERWORD

Many of my later Scientific American columns reported on Piet
Hein’s other creations. See Book 2 and Book 11 in my series for
chapters on Piet Hein’s Soma Cube, andBook 6 for a chapter on
his superellipse and supereggs. Many of his books of delightful light
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verse, which he calls “grooks,” have been translated and published
in the United States.

Several topological games have been invented that are like Hex
in that the winner is the first to complete a specified path joining
two sides of a board. One of them, sold under the name of Bridg-it,
turned out to have a winning line of play based on a pairing strat-
egy (see Chapter 18 of Book 3). In contrast, Hex has proved unusu-
ally impervious to analysis. To this day, winning lines of play are
known only for low-order boards, with no sign of a general strategy
for boards of all sizes.

Rex, a name for the reverse form of Hex in which the winner
forces his opponent to complete a chain, is (like the reverse forms of
most two-person games) much harder to analyze. Ronald Evans (see
his 1974 paper) has carried the analysis of Rex a step further than
Robert Winder did by showing that on even-order boards White has
a win by opening in an acute-corner cell. This is easily demonstrated
on the 2 × 2 board, and it is easy to see the win on the 3 × 3, but
the 4 × 4 is so complex that a winning line of play for the first player
remains unknown. David Silverman reported in a letter that he had
found an unusual pairing strategy for a second-player win on the
5 × 5. Readers will find a good 4 × 4 Rex problem by Evans in
Book 12.

“Beck’s Hex,” a variant proposed by Anatole Beck, allows Black
to tell White where he must make his first move. Beck was able to
prove (see bibliography) that Black can always win by telling White
to open in an acute-corner cell. Other variants of Hex, including Vex,
Vertical Vex, Reverse Vertical Vex, and Tex are described in Evans’s
1975 article.

Although it is intuitively apparent that Hex can’t end in a draw, a
formal proof is trickier than you might think. One “proof,” published
several times, goes like this: Imagine a finished game of Hex played
on a paper diamond. Cut out all the cells on which Black played;
then seize White’s edges and pull. If the paper comes apart it shows
that Black has completed a path. If it doesn’t come apart, White has
completed a path, and the paper is sure to come apart if you pull
on Black’s edges. Because one of the two must occur, a player must
win. Unfortunately, it’s not clear from what has been said that one
of the two must occur. To assume that the diamond must pull apart
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in one direction or the other is to assume what one is seeking to
prove, namely that one side must have completed a path. It remains
to be shown that a game cannot end with all cells filled and neither
side having completed a chain. As David Gale points out in his 1979
paper, the situation is similar to topology’s notorious Jordan curve
theorem. It is easy to “see” that a simple closed curve must cut the
plane into two separate regions, but a formal proof is not so easy to
formulate.

POSTSCRIPT

John Nash’s mental problems and his brilliant mathematical
achievements (they won him a Nobel Prize), are detailed in A Beau-
tiful Mind and its movie version, where Russell Crowe plays John
Nash. I had the pleasure of meeting Nash briefly when he was a
graduate student at New York University and I was researching my
Scientific American column on Hex.

Parker Brothers made and sold a boxed Hex set complete with a
folded board and counters of two different colors. It came close to
being featured as a game played on a spaceship in Arthur Clarke’s
movie 2001, but at the last moment it was abandoned for a more
picturesque three-dimensional chess board.

The proof that the first player can always win in Hex applies also
to ticktacktoe games. If the game can end in a draw, the first player
can always win or force a draw.
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CHAPTER NINE

Sam Loyd: America’s Greatest Puzzlist

the name sam loyd will not be familiar to many readers of this
book, yet Loyd was an authentic American genius, and in his time
something of a celebrity. For almost half a century, until his death
in 1911, he was the nation’s undisputed puzzle king. Thousands of
superb puzzles, most of them mathematical, appeared under his
name; many are still popular today.

Actually there were two Sam Loyds – father and son. When the
elder Loyd died, the younger dropped the “Jr.” from his name and
continued his father’s work, writing puzzle columns for magazines
and newspapers and issuing books and novelties from a dingy little
office in Brooklyn. But the son, who died in 1934, did not possess the
father’s inventiveness; his books are little more than hastily assem-
bled compilations of his father’s work.

Loyd senior was born in Philadelphia in 1841 of (as he once put
it) “wealthy but honest parents.” In 1844 his father, a real estate
operator, moved his family to New York, where Sam attended pub-
lic school until he was 17. If he had gone to college he might well
have become an outstanding mathematician or engineer, but Sam
did not go to college. One reason was that he had learned to play
chess.

For 10 years, Loyd apparently did little except push chess pieces
about on a chessboard. At that time, chess was enormously pop-
ular; many newspapers carried chess columns featuring problems
devised by readers. Loyd’s first problem was published by a New
York paper when he was 14. During the next five years, his output of
chess puzzles was so prodigious that he became known throughout
the chess world. When he was 16, he was made problem editor of
Chess Monthly, at that time edited by D. W. Fiske and the young
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Figure 42. (Artist: Beverly Ruedi.)

chess master, Paul Morphy. Later he edited several newspaper chess
columns and contributed regularly, under various pseudonyms, to
a score of others.

In 1877 and 1878, Loyd wrote a weekly chess page for Scientific
American Supplement, beginning each article with an initial letter
formed by the pieces of a chess problem. These columns comprised
most of his book Chess Strategy, which he printed in 1878 on his own
press in Elizabeth, New Jersey. Containing 500 of his choicest prob-
lems, this book is now much sought by collectors.

Loyd’s most widely reprinted chess problem, composed when he
was 18, illustrates the delightful way in which his posers were often
dressed up with anecdotes. It seems that in 1713, when Charles XII
of Sweden was besieged by the Turks at his camp in Bender, the king
often passed the time by playing chess with one of his ministers.
On one occasion, when the game reached the situation depicted in
Figure 42, Charles (playing white) announced a checkmate in three
moves. At that instant a bullet shattered the white knight. Charles
studied the board again, smiled, and said he did not need the knight
because he still had a mate in four moves. No sooner had he said
this than a second bullet removed his pawn at king’s rook 2. Unper-
turbed, Charles considered his position carefully and announced
mate in five.
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Figure 43. (Artist: Amy Kasai.)

The story has a topper. Years later a German chess expert pointed
out that if the first bullet had destroyed the white rook instead of
the knight, Charles still would have had a mate in six. Chess-playing
readers may enjoy tackling this remarkable four-part problem.

The original version of Loyd’s first commercially successful puz-
zle, drawn by himself in his late teens, is depicted in Figure 43. When
the puzzle was cut along the dotted lines, its three rectangles could
be arranged (without folding) so that the two jockeys rode the two
donkeys. P. T. Barnum bought millions of these puzzles from Loyd
and distributed them as “P. T. Barnum’s Trick Donkeys.” It is said that
the puzzle earned young Loyd $10,000 in a few weeks; it is popular
to this day.

From the mathematical standpoint, Loyd’s most interesting cre-
ation is the famous “14-15” or “Boss” puzzle. It had a surprising
revival in the late 1940s and can still be bought in novelty stores.
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1 2 3 4

Figure 44. (Artist: Amy Kasai.)

As shown in Figure 44, 15 numbered squares are free to slide about
within a box. At the beginning of the puzzle, the last two numbers
are not in serial order. The problem is to slide the squares, with-
out lifting them from the box, until all of them are in serial order,
with the vacant space in the lower right-hand corner as before. In
the 1880s the 14-15 puzzle had a tremendous vogue both here and
abroad, and numerous learned articles about it appeared in mathe-
matical journals.

Loyd offered a prize of $1,000 for a correct solution to the puz-
zle. Thousands of people swore they had solved it, but no one could
recall his moves well enough to record them and collect the prize.
Loyd’s offer was safe because the problem is not solvable. Of the
more than 20 trillion possible arrangements of the squares, exactly
half can be made by sliding the squares from the arrangement
depicted here. The remaining positions, including the one sought,
have a different parity (to use the language of permutation math-
ematics) and cannot be reached from any position possessing the
opposite parity.

The game was sometimes played by placing the squares in the
box at random, and then trying to slide them into serial order.
The probability of succeeding is of course 1/2. A simple way to
determine whether any arrangement B can be obtained from any
arrangement A is to see how many interchanges (exchanging the
positions of any two squares by removing them from the box and
replacing them) are required to convert A to B. If this number is
even, A and B have the same parity and either can be obtained from
the other by sliding.

The fact that a single interchange of any two blocks automatically
reverses the parity underlies a particularly fiendish version of the
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P A L

M I N D

Y O U R

R A T E

Figure 45. (Artist: Amy Kasai.)

puzzle marketed a few years ago. Here the squares are not numbered
but lettered as shown in Figure 45: rate and your are on squares of
one color, and mind and pal are on squares of another color. You
show this arrangement to your victim and then destroy it by sliding
the blocks here and there at random. As you do so you slyly maneu-
ver the second R into the upper left-hand corner before you hand
over the puzzle. The victim naturally permits this R to stay in the
corner while he tries to put the rest of the blocks in order – an impos-
sible feat because the switch of R’s has switched the parity. The best
the poor fellow can achieve is rate your mind pla.

Loyd’s greatest puzzle is unquestionably his famous “Get off the
Earth” paradox which he patented in 1896. A cardboard circle, riv-
eted at the center to a square piece of cardboard, bears around its
rim the pictures of 13 Chinese warriors. Part of each warrior is on
the circle, and part on the square. When the wheel is turned slightly,
the parts fit differently, and one warrior completely disappears! This
puzzle has been reproduced so often that we show in Figure 46 the
less familiar, but in some ways more puzzling, version called “Teddy
and the Lions.” In one position of the wheel, you see seven lions and
seven hunters; in another, eight lions and six hunters. Where does
the eighth lion come from? Which hunter vanishes and where does
he go?

In 1914, three years after his father’s death, Loyd junior issued
a mammoth Cyclopedia of Puzzles, surely the greatest collection of
problems ever assembled in one volume. The following brain teaser
is taken from this fabulous, long-out-of-print work. It illustrates how
cleverly the old master was able to take a simple problem, calling for
nothing more than the ability to think clearly and handle fractions,
and dramatize it in such a way that it becomes an exciting challenge.
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Figure 46. Loyd’s “Teddy and the Lions” paradox. On the top there are seven
lions and seven hunters; on the bottom, eight lions and six hunters.
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In Siam, Loyd explains, two kinds of fish are raised for their fight-
ing qualities – a large white perch known as the kingfish and a small
black carp called the devilfish. “Such antipathy exists between these
two species that they attack each other on sight and battle to the
death.”

A kingfish can easily dispose of one or two of the little fish in just
a few seconds. But the devilfish “are so agile and work together so
harmoniously that three of the little fellows would just equal a big
one, and they would battle for hours without results. So cleverly and
scientifically do they carry on their line of attack that four of the little
fellows would kill a large one in just three minutes and larger num-
bers would administer the coup de grâce proportionately quicker.”

(That is, five devilfish would kill one kingfish in 2 minutes and
24 seconds, six in 2 minutes, and so on.)

If 4 kingfish are opposed to 13 devilfish, which side will win the
fight and exactly how long will it take, assuming of course that the
little fish cooperate in the most efficient manner?

To avoid an ambiguity in Loyd’s statement of the problem, it
should be made clear that the devilfish always attack single king-
fish in groups of three or more, and stay with the large fish until he
is disposed of. We cannot, for example, assume that while the 12
little fish hold the 4 large fish at bay, the thirteenth devilfish darts
back and forth to finish off the large fish by attacking all of them
simultaneously. If we permit fractions, so to speak, of devilfish to be
effective, then we can reason that if 4 devils kill a king in 3 minutes,
13 devils will finish a king in 12/13 minutes, or 4 kings in 48/13 min-
utes (3 minutes, 41 and 7/13 seconds). But this same line of reason-
ing would lead to the conclusion that 12 devils would kill 1 king in
1 minute, or 4 kings in 4 minutes, even without the aid of the thir-
teenth little fish – a conclusion that clearly violates Loyd’s assump-
tion that three little fish are unable to kill one devil.

ADDENDUM

Arthur W. Burks, professor of philosophy at the University of Michi-
gan, wrote to tell me of the interesting way in which Loyd’s 14-
15 puzzle resembles a modern digital computer. Each has a finite
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number of states, each state followed by another state. On every
“run” of the computer or 14-15 puzzle, it begins in a certain state.
All other states can then be divided into two groups: the “admis-
sible” states, which can be realized by “inputs,” and the “inadmis-
sible” states, which cannot. The matter is discussed on page 63 of
“The Logic of Fixed and Growing Automata” by Professor Burks; a
1957 memo issued by the Engineering Research Institute of the Uni-
versity of Michigan.

ANSWERS

In the chess problem, White mates in three by taking the pawn with
his rook. If black bishop takes rook, White jumps his knight to B3,
Black is forced to move his bishop and White mates with pawn to
Kt4. If Black had taken the knight instead of the rook, white rook
checks on R3, Black interposes bishop, White mates with pawn to
Kt4 as before.

After the bullet shatters the white knight, White mates in four by
taking the pawn with his pawn. If Black moves bishop to K6, White
moves rook to Kt4. Black bishop to Kt4 is followed by white rook to
R4 (check). Bishop takes rook and White mates with pawn to Kt4.

After the bullet removes the white pawn at R2, White mates in five
with rook to QKt7. Should Black move his bishop to K6, then: (2) R-
Kt1, B-Kt4; (3) R-KR1 (check), B-R5; (4) R-R2, PxR; (5) P-Kt4 (mate).
Should Black on his first move play B-Kt8, then: (2) R-Kt1, B-R7; (3)
R-K1, K-R5; (4) K-Kt6, any move; (5) R-K4 (mate).

If the first bullet had removed White’s rook instead of his knight,
White mates in six by moving knight to B3. Black’s best response is
B-K8, which leads to (2) KtxB, K-R5; (3) P-R3, K-R4; (4) Kt-Q3, K-R5;
(5) Kt-B4, P-R4; (6) Kt-Kt6 (mate).

The jockeys can be placed on the two donkeys (which miracu-
lously break into a gallop) as shown in Figure 47. Figure 48 repro-
duces a possible source of Loyd’s famous puzzle: a Persian design of
the early seventeenth century.

Figure 49 shows an old painting on a leather pillow that was orig-
inally owned by Maurits Escher. It was given to me after Escher’s
death by his eldest son George. Note that each horse’s head belongs
to three bodies. I in turn gave the painting to Stephen Turner, an
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Figure 47. The puzzle of the donkeys solved. (Artist: Amy Kasai.)

Escher collector in Winston Salem, NC. The artist and date of the
painting are unknown.

Concerning the “Teddy and the Lions” paradox, it is meaningless
to ask which lion has vanished or which hunter has newly appeared.

Figure 48. Seventeenth-century Persian design. (Courtesy, Museum of Fine Arts,
Boston.)
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Figure 49. Old painting originally owned by Maurits Escher.

All the lions and hunters vanish when the parts are rearranged – to
form a new set of eight lions, each 1/8 smaller than before, and six
hunters, each 1/6 larger than before.

There are many ways to tackle the fighting-fish problem. Here is
Loyd’s own characteristic account of the solution:

Three of the little fish paired off with each of three big fish, engag-
ing their attention while the other four little fighters polished off the
fourth big one in just three minutes. Then five little fellows tackled
one big fish and killed him in 2 minutes 24 seconds; while the other
little ones were battling with the other big ones.

It is evident that if the remaining two groups had been assisted by
one more fighter they would all have finished in the same time, so
there is only sufficient resistance left in each of the big ones to call
for the attention of a little fish for 2 minutes 24 seconds. Therefore if
seven now attack instead of one, they would do it in one seventh of
that time, or 20 and 4/7 seconds.

In dividing the little-fish forces against the remaining two big
ones – one would be attacked by seven and the other by six – the
last fish at the end of the 20 and 4/7 seconds would still require the
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punishment which one little one could administer in that time. The
whole 13 little fellows, concentrating their attack, would give the fish
his quietus in one thirteenth of that time, or 1 and 53/91 seconds.

Adding up the totals of the time given in the several rounds – 3
minutes, 2 minutes 24 seconds, 20 and 4/7 seconds, and 1 and 53/91
seconds, we have 5 minutes 46 and 2/13 seconds as the entire time
consumed in the battle.

AFTERWORD, 1988

For more about Sam Loyd, readers are referred to the introductions
to the two Dover collections of Loyd puzzles I have edited and to the
chapter on advertising premiums in my Book 10. I was long under
the impression that the collection of puzzles in Loyd’s Cyclopedia
had been selected by Loyd junior after his father’s death. Not so. In
1907 Loyd senior started Our Puzzle Magazine (I do not know how
many issues appeared), which drew upon his earlier output. After
his father’s death, Sam Loyd, Jr., simply printed the Cyclopedia from
the plates of this periodical. Massive as the book is, it fails to include
hundreds of Loyd puzzles that appeared in various publications and
as advertising devices. Will Shortz, a former editor of Games maga-
zine and now crossword puzzle editor of The New York Times, has
for years been tracking down this rich mine of neglected material. I
hope that he will some day edit a definitive collection of Loyd’s for-
gotten creations.

Loyd’s famous “Get off the Earth” premium was based on earlier
linear versions. For a history of such paradoxes, see the two chap-
ters on geometrical vanishes in my Mathematics, Magic, and Mys-
tery, and the article by Mel Stover. Both references also cover related
vanishing area paradoxes such as Paul Curry’s triangle, presented
here in Chapter 14. In recent years, the most popular version of a
vanishing person is the disappearing leprechaun paradox, drawn by
Ms. Pat Patterson, a Canadian artist. I reproduce and discuss it in the
chapter on advertising premiums in my Book 10 and in Aha, Gotcha!

Loyd’s 14-15 puzzle is covered in most of the classic general works
on recreational mathematics: Rouse Ball in England, Edouard Lucas
in France, W. Ahrens in Germany, and many others. In the second
volume of his Mathematische Unterhaltengen und Spiele (Leipzig,
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Figure 50. Illustration from Sam Loyd’s Cyclopedia of Puzzles.

1918), Ahrens has an extensive treatment of the puzzle and its his-
tory. An eight-block simplification (3 × 3 matrix) is offered as a prob-
lem in Chapter 20 of my Book 5. Even simpler versions, such as five
blocks on a 2 × 3 field, have been the basis of problems in many old
puzzle books.

Unit squares provide the simplest kind of sliding-block puzzles.
Hundreds of more difficult sliding puzzles – pieces with rectangular
and other shapes, and fields with shapes other than square or rect-
angular – have been marketed from time to time around the globe.
Chapter 7 of my Book 5 introduces this large field of mechanical
puzzles. The definitive book about them, with numerous color
photographs, is by L. E. Hordern (see bibliography, Sliding Piece
Puzzles).

POSTSCRIPT

On previous pages I falsely credited Sam Loyd with having invented
the 14-15 puzzle. I did so because Loyd himself took credit for this
puzzle. (Figure 50 is an illustration of the puzzle from his 1914 book.)
It turns out that he lied. Not only did he not invent the puzzle,
he had almost nothing to do with its amazing popularity! For a
detailed history of the puzzle, which became a mania in the 1880s
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throughout America and Europe, see Jerry Slocum’s marvelous book
The 15 Puzzle: How it Drove the World Crazy, by Slocum and Dic Son-
neveld (published by Slocum in 2006). The craze even surpassed the
recent craze of Rubik’s cube!

Slocum’s beautiful book is packed with photos of versions of the
puzzle that were marketed here and abroad, along with cartoons
about the mania, and comic poems telling how persons were driven
out of their wits by fruitless efforts to solve the puzzle. Loyd not only
claimed he invented the puzzle, but he also shamelessly took credit
for the board game of Parchesi and for a skill puzzle called Pigs in
Clover. Moreover, many of his published puzzles, in newspapers and
magazines, were cribbed without credit from the writings of Eng-
land’s great puzzle maker Henry Dudeney.

Loyd does deserve credit for his vanishing Chinese warrior para-
dox (its title “Get off the Earth” reflected American prejudice against
the flood of Chinese entering the country as laborers), and several
clever variants that Loyd marketed as advertising premiums. The
puzzle with the two donkeys was also his. For Mel Stover’s hilari-
ous switch on the donkeys see “Just for the Mel of It,” by Max Maven
in Puzzler’s Tribute, David Wolfe and Tom Rodgers (eds.), A K Peters,
2002, pp. 21–27.

For 3 × 3 versions of the 14-15 puzzle, with minimum-move solu-
tions, see my Book 5, Chapter 20.

Loyd’s “Get off the Earth” paradox was a circular form of ear-
lier linear versions of vanishing objects. See the two chapters on
geometrical vanishes in my 1956 Dover paperback, Mathematics,
Magic, and Mystery, and Mel Stover’s Games article listed in the bib-
liography.
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CHAPTER TEN

Mathematical Card Tricks

somerset maugham’s short story “Mr. Know-All” contains the fol-
lowing dialogue:

“Do you like card tricks?”
“No, I hate card tricks.”
“Well, I’ll just show you this one.”

After the third trick, the victim finds an excuse to leave the room.
His reaction is understandable. Most card magic is a crashing bore
unless it is performed by skillful professionals. There are, however,
some “self-working” card tricks that are interesting from a mathe-
matical standpoint.

Consider the following trick. The magician, who is seated at a
table directly opposite a spectator, first reverses 20 cards anywhere
in the deck. That is, he turns them face up in the pack. The spec-
tator thoroughly shuffles the deck so that these reversed cards are
randomly distributed. He then holds the deck underneath the table,
where it is out of sight of everyone, and counts off 20 cards from
the top. This packet of 20 cards is handed under the table to the
magician.

The magician takes the packet but continues to hold it beneath
the table so that he cannot see the cards. “Neither you nor I,” he
says, “knows how many cards are reversed in this group of 20 that
you handed me. However, it is likely that the number of such cards
is less than the number of reversed cards among the 32 that you
are holding. Without looking at my cards, I am going to turn a few
more face-down cards face up and attempt to bring the number of
reversed cards in my packet to exactly the same number as the num-
ber of reversed cards in yours.”

109
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The magician fumbles with his cards for a moment, pretending
that he can distinguish the fronts and backs of the cards by feel-
ing them. Then he brings the packet into view and spreads it on
the table. The face-up cards are counted. Their number proves to
be identical with the number of face-up cards among the 32 held by
the spectator!

This remarkable trick can best be explained by reference to one
of the oldest mathematical brain-teasers. Imagine that you have
before you two beakers, one containing a liter of water; the other
a liter of wine. One cubic centimeter of water is transferred to the
beaker of wine and the wine and water mixed thoroughly. Then a
cubic centimeter of the mixture is transferred to the water. Is there
now more water in the wine than wine in the water? Or vice versa?
(We ignore the fact that in practice, a mixture of water and alcohol
is a trifle less than the sum of the volumes of the two liquids before
they are mixed.)

The answer is that there is just as much wine in the water as water
in the wine. The amusing thing about this problem is the extraordi-
nary amount of irrelevant information involved. It is not necessary
to know how much liquid there is in each beaker, how much is trans-
ferred, or how many transfers are made. It does not matter whether
the mixtures are thoroughly mixed or not. It is not even essential
that the two vessels hold equal amounts of liquid at the start! The
only significant condition is that at the end each beaker must hold
exactly as much liquid as it did at the beginning. When this obtains,
then obviously if x amount of wine is missing from the wine beaker,
the space previously occupied by the wine must now be filled with x
amount of water.

If the reader is troubled by this reasoning, he can quickly clarify it
with a deck of cards. Place 26 cards face down on the table to repre-
sent wine. Beside them put 26 cards face up to represent water. Now
you may transfer cards back and forth in any manner you please
from any part of one pile to any part of the other, provided you fin-
ish with exactly 26 in each pile. You will then find that the number
of face-down cards in either pile will match the number of face-up
cards in the other pile.

Now try a similar test beginning with 32 face-down cards and
20 face-up cards. Make as many transfers as you wish, ending with
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20 cards in the smaller pile. The number of face-up cards in the
large pile will of necessity exactly equal the number of face-down
cards among the 20. Now turn over the small pile. This automatically
turns its face-down cards face up and its face-up cards face down.
The number of face-up cards in both groups will therefore be the
same.

The operation of the trick should now be clear. At the begin-
ning the magician reverses exactly 20 cards. Later, when he takes
the packet of 20 cards from the spectator, it will contain a number
of face-down cards equal to the number of face-up cards remain-
ing in the deck. He then pretends to reverse some additional cards,
but actually all he does is turn the packet over. It will then contain
the same number of reversed cards as there are reversed cards in the
group of 32 held by the spectator. The trick is particularly puzzling
to mathematicians, who are apt to think of all sorts of complicated
explanations.

Many card effects known in the conjuring trade as spellers are
based on elementary mathematical principles. Here is one of the
best. With your back to the audience, ask someone to take from 1 to
12 cards from the deck and hide them in his pocket without telling
you the number. You then tell him to look at the card at that number
from the top of the remainder of the deck and remember it.

Turn around and ask for the name of any individual, living or
dead. For example, someone suggests Marilyn Monroe (the name,
by the way, must have more than 12 letters). Taking the deck in your
hand, you say to the person who pocketed the cards: “I want you to
deal the cards one at a time on the table, spelling the name Marilyn
Monroe like this.” To demonstrate, deal the cards from the top of the
deck to form a face-down pile on the table, taking one card for each
letter until you have spelled the name aloud. Pick up the small pile
and replace it on the deck.

“Before you do this, however,” you continue, “I want you to add
to the top of the deck the cards you have in your pocket.” Emphasize
the fact, which is true, that you have no way of knowing how many
cards this will be. Yet in spite of this addition of an unknown number
of cards, after the spectator has completed spelling Marilyn Monroe,
the next card (that is, the card on top of the deck) will invariably turn
out to be his chosen card!
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The operation of the trick yields easily to analysis. Let x be the
number of cards in the spectator’s pocket and also the position of
the chosen card from the top of the deck. Let y be the number of
letters in the selected name. Your demonstration of how to spell the
name automatically reverses the order of y cards, bringing the cho-
sen card to a position from the top that is y minus x. Adding x cards
to the deck therefore puts y minus x plus x cards above the selected
one. The x’s cancel out, leaving exactly y cards to be spelled before
the desired card is reached.

A more subtle compensatory principle is involved in the follow-
ing effect. A spectator is asked to select any three cards and place
them face down on the table without letting the magician see them.
The remaining cards are shuffled and handed to the magician.

“I will not alter the position of a single card,” the magician
explains. “All I shall do is remove one card that will match in value
and color the card you will select in a moment.” He then takes a sin-
gle card from the pack and places it face down at one side of the
table.

The spectator is now asked to take the remaining cards in hand
and to turn face up the three cards he previously placed on the table.
Let us assume that they are a nine, a queen, and an ace. The magi-
cian requests that he start dealing cards face down on top of the
nine, counting aloud as he does so, beginning the count with “10”
and continuing until he reaches “15.” In other words, the spectator
deals six cards face down on the nine. The same procedure is fol-
lowed with the other two cards. The queen, which has a value of 12
(jacks are 11; kings, 13), will require three cards to bring the count
from 12 to 15. The ace (1) will require 14 cards.

The magician now has the spectator total the values of the three
original face-up cards, and note the card at that position from the
top of the remainder of the deck. In this case the total is 22 (9 plus 12
plus 1), so he looks at the twenty-second card. The magician turns
over his “prediction card.” The two cards match in value and color!

How is it done? When the magician glances through the deck to
find a “prediction card,” he notes the fourth card from the bottom
and then removes another card that matches it in value and color.
The rest of the trick works automatically. (On rare occasions, you
may find the prediction card among the bottom three cards of the
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pack. When this happens you must remember to tell the spectator
later, when he makes his final count to a selected card, to finish the
count, then look at the next card.) I leave to the reader the easy task
of working out an algebraic proof of why the trick cannot fail.

The ease with which cards can be shuffled makes them pecu-
liarly appropriate for demonstrating a variety of probability theo-
rems, many of which are startling enough to be called tricks. For
example, let us imagine that two people each hold a shuffled deck
of 52 cards. One person counts aloud from 1 to 52; on each count,
both deal a card face up on the table. What is the probability that at
some point during the deal two identical cards will be dealt simul-
taneously?

Most people would suppose the probability to be low, but actu-
ally it is better than 1/2! The probability there will be no coincidence
is 1 over the transcendental number e. (This is not precisely true, but
the error is less than 1 divided by 1069. The reader may consult page
47 in the current edition of W. Rouse Ball’s Mathematical Recreations
and Essays for a method of arriving at this figure.) Since e is 2.718 . . . ,
the probability of a coincidence is roughly 17/27 or almost 2/3. If
you can find someone willing to bet you even odds that no coinci-
dence will occur, you stand a rather good chance to pick up some
extra change. It is interesting to note that we have here an empirical
procedure, based on probability, for making a decimal expansion of
e (comparable to the Buffon’s Needle procedure for doing the same
thing with pi). The more cards used, the closer the probability of no
coincidence approaches 1/e.

POSTSCRIPT

Since Dover published my Mathematics, Magic, and Mystery in 1956,
the literature on tricks based on mathematical principles has grown
exponentially. Thousands of clever card effects that are what magi-
cians call “self-working” have been published in books and magic
magazines. Living magic buffs who have been especially creative
in this curious field are mathematician Colm Mulcahy, of Spelman
College; Nick Trost, writer of several books on self-working card
magic; and Jim Steinmeyer, creator of stage illusions and author
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of books about magic and magicians. Some of Steinmeyer’s card
effects, including a famous spelling trick with nine cards, are in his
small books titled Impuzzibilities and Further Impuzzibilities. Books
by Karl Fulves and Harry Lorrayne are also rich sources of mathe-
matical card tricks.

Among magicians no longer living who were especially creative in
the field of mathematical card tricks, one thinks of Charles Jordan,
Alex Elmsley, and Bob Hummer. You’ll find a raft of mathematical
tricks with cards, coins, dice, and other objects in the 14 other books
in this series.
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CHAPTER ELEVEN

Memorizing Numbers

everyone uses mnemonic devices – ways of memorizing bits of
information by associating them with things that are easier to
remember. In the United States, the most familiar of these devices
is surely the rhyme beginning: “Thirty days hath September. . . . ”
Another well-known mnemonic device is: “Every good boy does
fine” (for egbdf, the lines of the musical staff).

The same principle can also be applied, with ingenious varia-
tions, to the memorizing of numbers. Such tricks come easily to
mathematicians. When Bertrand Russell visited New York in 1951,
he told a newspaper columnist that he had no difficulty in recall-
ing the number of his room at the Waldorf-Astoria – 1414 – because
1.414 is the square root of 2. The British mathematician G. H. Hardy
wrote of calling on his friend Srinivasa Ramanujan, the Indian math-
ematical genius, in a taxicab numbered 1729. Hardy remarked that
this was a dull number. “No,” Ramanujan promptly replied. “It is a
very interesting number. It is the smallest number expressible as a
sum of two cubes in two different ways” (12 cubed plus 1 cubed,
or 10 cubed plus 9 cubed). It must be admitted that even among
mathematicians such an intimate acquaintance with numbers is
rare.

The most common mnemonic device for remembering a series
of digits is a sentence or rhyme in which the number of letters
in each word corresponds to the digits in the desired order. Many
such memory props have been worked out in various languages to
recall pi beyond the usual four decimals. In English they range in
length from the anonymous “May I have a large container of cof-
fee?” through Sir James Jeans’s “How I want a drink, alcoholic of
course, after the heavy chapters involving quantum mechanics” to
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this doggerel contributed by Edouard Prevost to a publication of
Graham Transmissions, Inc.:

Now I – even I – would celebrate
In rhymes inept the great
Immortal Syracusan rivaled nevermore,
Who by his wondrous lore,
Untold us before,
Made the way straight
How to circles mensurate.

I know of no similar aids in English to recall e, the other common
transcendental number. However, if you memorize e to five deci-
mal places (2.71828), you automatically know it to nine, because
the last four digits obligingly repeat themselves (2.718281828). In
France e is memorized to 10 places by the traditional memory aid:
Tu aideras rappeler ta quantit beaucoup de docteurs amis. Perhaps
some reader can construct an amusing English sentence that will
carry e to at least 20 decimals.

Is there a mnemonic system that, once it has been mastered,
will enable one to memorize quickly any series of digits? There is
such a system, and it has been developed to a high degree by mod-
ern memory experts. Not only can the system be used to give an
impressive dinner-table demonstration of memory; it also can be
highly useful in memorizing important mathematical and physical
constants, historical dates, house and telephone numbers, license
plates, social security numbers, and so on.

Although the art of mnemonics goes back to ancient Greece (the
term comes from Mnemosyne, the Greek goddess of memory), it was
not until 1634 that a Frenchman named Pierre Hrigone published in
Paris his Cursus Mathematici, which contained an ingenious system
for memorizing numbers. The system consisted in substituting con-
sonants for digits and then adding vowels wherever required so that
words would be formed. The words were then easily memorized by
other mnemonic methods.

Hrigone’s original number alphabet was soon adopted by mem-
ory experts in many countries. In Germany the great Gottfried Wil-
helm von Leibniz was sufficiently intrigued by the notion to incor-
porate it into his scheme for a universal language; Lewis Carroll
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devised what he regarded as an improvement over the number
alphabet in Richard Grey’s Memoria Technica, a popular British
work on mnemonics published in 1730. (A reproduction of Carroll’s
notes on his number alphabet will be found in Warren Weaver’s arti-
cle “Lewis Carroll: Mathematician,” in Scientific American for April
1956.) In his diary, Carroll records that he applied his system to lines
for memorizing pi to 71 decimals and to key words for the loga-
rithms of all prime numbers less than 100. At one time, he planned
to issue a booklet titled, Logarithms by Lightning: A Mathematical
Curiosity.

The modern form of Hrigone’s number alphabet, as currently
used by all English-speaking memory experts, is shown in the chart
of Figure 51. This must be thoroughly fixed in the memory before
the system can be used profitably. On the right side of the chart
are suggestions that may help in memorizing the table. Note that
only consonants are employed, and that where two or more con-
sonants stand for the same digit, they have similar sounds. Three
consonants – W, H and Y (spelling “why”) – do not appear on the
chart.

Suppose we wish to use this system for remembering that mer-
cury boils at 357 degrees centigrade. Our first step is to find a word
in which the consonants, taken in order, will translate into 357. Such
a word readily comes to mind – MiLK. The next step is to associate
this word by a vivid mental picture with the word “mercury.” One
way to do this is to imagine Mercury, the messenger of the gods,
winging his way through the clouds with a container of milk in his
hands. The more preposterous the mental image the more easily it
is retained by the mind. When we wish to recall the boiling point
of mercury we have only to follow the chain of associations from
the element to the Greek god to milk to 357. This may seem like a
roundabout means of memorizing a number, but no better artificial
system has yet been discovered. It is astonishing how firmly the links
of the chain remain planted in the mind.

Consider some additional examples. The atomic number of the
element indium is 49. We can recall this easily by linking India with
the word RuPee. Neptunium has an atomic number of 93; we imag-
ine Neptune puffing an oPiuM pipe. For tantalum, element 73, we
might picture Tantalus plugging the hole in his tantalizing cup with
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DIGITS CONSONANTS MEMORY AIDS

1 T,   D T  has one downstroke t

2 N N  has two downstrokes n

3 M M  has three downstrokes m

4 R R  is the fourth letter in “four” FOUR

5 L L  is 50 in Roman numerals 50

6
J,  soft G,
SH,   CH

J  looks like 6 when reversed J   6

9 P,   B P  looks like 9 when reversed P   9

0
Z,   S,

soft C Z  is the initial of “zero” ZERO

7
K,  hard G,

hard C
K  can be printed with 
     two sevens

7

7
8

F, V,
PH as in photo

F  , in lower-case script,
has two loops like the figure 8  8

Figure 51. A “number alphabet” in which consonants stand for digits.

a wad of chewing GuM. Platinum, number 78, can be recalled by
thinking of yourself sporting a pair of platinum CuFF links. Double
letters, such as the f’s in “cuff,” are regarded as single letters. The
number alphabet is strictly phonetic. Silent consonants, as well as
W, H and Y, are ignored.

The chart of Figure 52 shows how the system can be used for
memorizing to three decimal places the square roots of 2, 3, 5, 6, 7,
8, 10. (The square root of 8 is of course twice the square root of 2.
Similarly, the square root of 12 can be obtained by doubling the
square root of 3.) Only the first three consonants of each key word
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NUMBER SQUARE ROOT MNEMONIC KEY

2 1.414 RAT RACE.  Think of two rats racing.

3 1.732
KIMONO.  Three suggests triangle.  Think
of a kimono decorated with a pattern of
small triangles.

5 2.236
ENMESH.  Five suggests pentagon.  Think
of the pentagon hopelessly enmeshed in
red tape.

6 2.449
RARE BEE.  Six suggests hexagon.  Think of
the hexagonal cells of a beehive.  Crawling
over the cells is a two-headed bee.

7 2.645
SHEER LINEN.  Seven suggests the dance
of seven veils.  Think of the veils as made 
of sheer linen.

8 2.828
FUNNY FACE.  Eight suggests “ate.”  Think
of taking a bite and making a funny face.

10 3.162
TOUCH NOSE.  Ten suggests the fingers.
Think of touching your nose with all ten
of them.

Figure 52. How the number alphabet can be used to memorize square roots.

or phrase are considered. They stand for the three decimals of the
corresponding square root. (The digit preceding the decimal point
need not be considered because it is obvious.) Many other words
can of course be substituted for those chosen here. It is usually best,
in fact, to work out your own key words and mental associations
rather than adopt those of someone else; your inventions will be
closer to your own experience and therefore easier to recall.

Larger numbers can be memorized by taking figures in pairs or
triplets, devising a suitable word for each group, and linking the
words in a chain of striking mental pictures. A telephone number,
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for example, would be fixed in the memory by a chain of images
connecting the person or firm to the exchange, then to two words
that stand for the digits in the phone number.

It is by means of such chains of mental pictures that professional
memory experts are able to repeat long lists of random digits imme-
diately after the list has been read aloud to them. This seemingly
incredible feat is well within the powers of anyone who troubles to
spend a few weeks of daily practice in mastering the number alpha-
bet. As a first step try memorizing the eight digits in the number on a
dollar bill. Take the digits two at a time, forming words in which the
first two consonants of each word correspond to a pair of numbers.
For example, if the number is 41–09–15–85, these pairs can be trans-
lated into the four words: ReD, ZeBra, TeLescope, FLower. Think first
of a red zebra. It holds a telescope to its eye. The telescope is trained
on a distant flower.

In choosing words, nouns that provide vivid pictures are of
course preferable, though adjectives can often be linked conve-
niently to a following noun, as in red zebra. In most cases the first
words that come to mind are preferable, and each word should be
linked to the next one by the most ridiculous image you can imag-
ine. With practice, appropriate words will occur to you more rapidly,
and you should soon be able to form your chain of mental pictures
fast enough to keep pace with anyone who calls the digits to you
slowly.

Memory experts are able to form chains of mental associations
with extraordinary speed because every pair of digits immediately
suggests to them a picture word taken from a previously memorized
list. Thus they do not waste time in groping for suitable words. Some
experts work with prememorized word lists for three-digit groups.
To aid the students of his memory school in New York, Bruno Furst
provides them with a printed number dictionary listing a variety of
appropriate words for each number from 1 to 1,000. Such lists are
not necessary, however, unless you intend to develop great profi-
ciency in the art. Suitable words can always be devised as you go
along if the numbers are read to you slowly, and you will discover
that it is not at all difficult to memorize a series of 50 random dig-
its by this method. Fortunately long chains of quickly improvised
mental pictures do not remain long in the mind, so if you repeat
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the stunt a day or so later there will be no confusion of the new key
words with those of the previous demonstration.

ADDENDUM

Among the many responses to my request for a mnemonic sentence
for e, the following seemed to me particularly noteworthy:

To express e, remember to memorize a sentence to simplify this.
(John L. Greene, Beverly Hills, California.)

To disrupt a playroom is commonly a practice of children.
(Joseph J. Guiteras, Baldwinsville, New York.)

By omnibus I traveled to Brooklyn. (David Mage, New York, New
York.)

It enables a numskull to memorize a quantity of numerals. (Gene
Widhoff, Burbank, California.)

The Enciclopedia universal ilustrada, in an article on “Mnemo-
tecnia,” gives the following Spanish sentence for e : Te ayudar a
recordar la cantidad a indoctos si relesme bien. Several Italian verses
for e will be found on page 755 of Matematica Dilettevole e Curiosa
by Italo Ghersi.
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CHAPTER TWELVE

Nine More Problems

1. THE TOUCHING CIGARETTES

Four golf balls can be placed so that each ball touches the other
three. Five half-dollars can be arranged so that each coin touches
the other four (see Figure 53).

Is it possible to place six cigarettes so that each touches the other
five? The cigarettes must not be bent or broken.

2. TWO FERRYBOATS

Two ferryboats start at the same instant from opposite sides of a
river, traveling across the water on routes at right angles to the
shores. Each travels at a constant speed, but one is faster than the
other. They pass at a point 720 yards from the nearest shore. Both
boats remain in their slips for 10 minutes before starting back. On
the return trips they meet 400 yards from the other shore.

How wide is the river?

Figure 53. (Artist: James Egleson.)
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3. GUESS THE DIAGONAL

A rectangle is inscribed in the quadrant of a circle as shown (Fig-
ure 54). Given the unit distances indicated, can you accurately
determine the length of the diagonal AC?

Time limit: one minute!

4. THE EFFICIENT ELECTRICIAN

An electrician is faced with this annoying dilemma. In the basement
of a three-story house, he finds bunched together in a hole in the
wall the exposed ends of 11 wires, all alike. In a hole in the wall on
the top floor he finds the other ends of the same 11 wires, but he has
no way of knowing which end above belongs to which end below.
His problem: to match the ends.

To accomplish his task he can do two things: (1) short-circuit
the wires at either spot by twisting ends together in any manner he
wishes; (2) test for a closed circuit by means of a continuity tester
consisting of a battery and a bell. The bell rings when the instru-
ment is applied to two ends of a continuous, unbroken circuit.

Not wishing to exhaust himself by needless stair climbing, and
having a passionate interest in operations research, the electrician
sat down on the top floor with pencil and paper and soon devised
the most efficient possible method of labeling the wires.

What was his method?

Figure 54. (Artist: James Egleson.)
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Figure 55. (Artist: James Egleson.)

5. CROSS THE NETWORK

One of the oldest of topological puzzles, familiar to many a school-
boy, consists of drawing a continuous line across the closed network
shown in Figure 55 so that the line crosses each of the 16 segments
of the network only once. The curved line shown here does not solve
the puzzle because it leaves one segment uncrossed. No “trick” solu-
tions are allowed, such as passing the line through a vertex or along
one of the segments, folding the paper, and so on.

It is not difficult to prove that the puzzle cannot be solved on a
plane surface. Two questions: Can it be solved on the surface of a
sphere? On the surface of a torus (doughnut)?

6. THE TWELVE MATCHES

Assuming that a match is a unit of length, it is possible to place
12 matches on a plane in various ways to form polygons with inte-
gral areas. Figure 56 shows two such polygons: a square with an area
of 9 square units, and a cross with an area of 5.

Figure 56. (Artist: James Egleson.)
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Figure 57. (Artist: James Egleson.)

The problem is this: Use all 12 matches (the entire length of each
match must be used) to form in similar fashion the perimeter of a
polygon with an area of exactly 4 square units.

7. HOLE IN THE SPHERE

This incredible problem – incredible because it seems to lack suffi-
cient data for a solution – appeared in a recent issue of The Graham
Dial, a publication of Graham Transmissions, Inc. A cylindrical hole
6 inches long has been drilled straight through the center of a solid
sphere. What is the volume remaining in the sphere?

8. THE AMOROUS BUGS

Four bugs – A, B, C, and D – occupy the corners of a square 10 inches
on a side (Figure 57). A and C are male, B and D are female. Simul-
taneously A crawls directly toward B, B toward C, C toward D, and D
toward A. If all four bugs crawl at the same constant rate, they will
describe four congruent logarithmic spirals that meet at the center
of the square.

How far does each bug travel before they meet? The problem can
be solved without calculus.

9. HOW MANY CHILDREN?

“I hear some youngsters playing in the back yard,” said Jones, a
graduate student in mathematics. “Are they all yours?”
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Figure 58. (Artist: James Egleson.)

“Heavens, no,” exclaimed Professor Smith, the eminent num-
ber theorist. “My children are playing with friends from three other
families in the neighborhood, although our family happens to be
largest. The Browns have a smaller number of children, the Greens
have a still smaller number, and the Blacks have the smallest of all.”

“How many children are there altogether?” asked Jones.
“Let me put it this way,” said Smith. “There are fewer than 18 chil-

dren, and the product of the numbers in the four families happens
to be my house number which you saw when you arrived.”

Jones took a notebook and pencil from his pocket and started
scribbling. A moment later he looked up and said, “I need more
information. Is there more than one child in the Black family?”

As soon as Smith replies, Jones smiled and correctly stated the
number of children in each family.

Knowing the house number and whether the Blacks had more
than one child, Jones found the problem trivial. It is a remarkable
fact, however, that the number of children in each family can be
determined solely on the basis of the information given here!

ANSWERS

1. There are several different ways of placing the six cigarettes.
Figure 58 shows the traditional solution as it is given in several
old puzzle books.

To my vast surprise, about 15 readers discovered that seven
cigarettes could also be placed so that each touched all of
the others! This of course makes the older puzzle obsolete.
Figure 59, sent to me by George Rybicki and John Reynolds,
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Figure 59. (Artist: James Egleson.)

graduate students in physics at Harvard, shows how it is done.
“The diagram has been drawn,” they write, “for the critical
case where the ratio of length to diameter of the cigarettes is
7/2

√
3. Here the points of contact occur right at the ends of the

cigarettes. The solution obviously will work for any length-to-
diameter ratio greater than 7/2

√
3. Some observations on actual

‘regular’ size cigarettes give a ratio of about 8 to 1, which is, in
fact, greater than 7/2

√
3, so this is an acceptable solution.” Note

that if the center cigarette, pointing directly toward you in the
diagram, is withdrawn, the remaining six provide a neat sym-
metrical solution of the original problem.

2. When the ferryboats meet for the first time (top of Figure 60),
the combined distance traveled by the boats is equal to the

Figure 60. (Artist: James Egleson.)
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Figure 61. (Artist: James Egleson.)

width of the river. When they reach the opposite shore, the com-
bined distance is twice the width of the river, and when they
meet the second time (bottom of Figure 60), the total distance
is three times the river’s width. Since the boats have been mov-
ing at a constant speed for the same period of time, it follows
that each boat has gone three times as far as when they first
met and had traveled a combined distance of one river-width.
Since the white boat had traveled 720 yards when the first meet-
ing occurred, its total distance at the time of the second meet-
ing must be 3 × 720, or 2,160 yards. The bottom illustration
shows clearly that this distance is 400 yards more than the river’s
width, so we subtract 400 from 2,160 to obtain 1,760 yards, or
one mile, as the width of the river. The time the boats remained
at their landings does not enter into the problem.

The problem can be approached in other ways. Many readers
solved it as follows. Let x equal the river-width. On the first trip
the ratio of distances traveled by the two boats is x – 720 : 720.
On the second trip it is 2x – 400 : x + 400. These ratios are equal,
so it is easy to solve for x. (The problem appears in Sam Loyd’s
Cyclopedia of Puzzles, 1914, page 80.)

3. Line AC is one diagonal of the rectangle (Figure 61). The other
diagonal is clearly the 10-unit radius of the circle. Since the diag-
onals are equal, line AC is 10 units long.

4. On the top floor, the electrician shorted five pairs of wires
(the shorted pairs are connected by broken lines in Figure 62),
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Figure 62. (Artist: James Egleson.)

leaving one free wire. Then he walked to the basement and
identified the lower ends of the shorted pairs by means of
his continuity tester. He labeled the ends as shown and then
shorted them in the manner indicated by the dotted lines.

Back on the top floor, he removed all the shorts but left the
wires twisted at insulated portions so that the pairs were still
identifiable. He then checked for continuity between the free
wire (which he knew to be the upper end of F) and some other
wire. When he found the other wire, he was able at once to label
it E2 and to identify its mate as E1. He next tested for conti-
nuity between E1 and another end which, when found, could
be marked D2 and its mate D1. Continuing in this fashion, the
remaining ends were easily identified. The procedure obviously
works for any odd number of wires.

J. G. Fletcher, Princeton, New Jersey, was the first to send
a method of applying this procedure, with a slight modifica-
tion, to any even number of wires except two. Assume there is a
twelfth wire on the far right in Figure 62. The same five pairs are
shorted on the top floor, leaving two free wires. In the basement,
the wires are shorted as before, and the twelfth wire is labeled
G. Back on the top floor, G is easily identified as the only one of
the two free wires in which no continuity is found. The remain-
ing 11 wires are then labeled as previously explained.



Nine More Problems 131

Figure 63. (Artist: James Egleson.)

In some ways a more efficient procedure, which takes care of
all cases except two wires (two wires have no solution), was sent
in by D. N. Buell, Detroit; R. Elsdon-Dew, Durban, South Africa;
Louis Katz and Fremont Reizman, physics students at the Uni-
versity of Wisconsin; and Danforth K. Gannett, Denville, New
Jersey. Mr. Gannett explained it clearly with the diagram for 15
wires shown in Figure 63. The method of labeling is as follows:

1. Top floor: short wires in groups of 1, 2, 3, 4, . . . . Label the
groups A, B, C, D, . . . . The last group need not be complete.

2. Basement: identify the groups by continuity tests. Number
the wires and short them in groups Z, Y, X, W, . . . .

3. Top floor: remove the shorts. Continuity tests will now
uniquely identify all wires. Wire 1 is of course A. Wire 3 is
the only wire in group B that has continuity with 1. Its mate
will be 2. In group C, only wire 6 connects with 1. Only 5
connects with 2. The remaining wire in C will be 4. And so
on for the other groups.

The chart can be extended to the right as far as desired. To
determine the procedure for n wires, simply cover the chart
beyond the nth wire.
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Figure 64. (Artist: James Egleson.)

5. A continuous line that enters and leaves one of the rectangu-
lar spaces must of necessity cross two line segments. Since the
spaces labeled A, B, and C in Figure 64 are each surrounded by
an odd number of segments, it follows that an end of a line must
be inside each if all segments of the network are crossed. But a
continuous line has only two ends, so the puzzle is insoluble
on a plane surface. This same reasoning applies if the network
is on a sphere or on the side of a torus (drawing at lower left).
However, the network can be drawn on the torus (drawing at
lower right) so that the hole of the torus is inside one of the
three spaces, A, B, and C. When this is done, the puzzle is easily
solved.

Another approach to this problem was taken by Ken Knowl-
ton and Ronald Graham when both were at Bell Labs. Don-
ald Knuth discussed some small improvements on their ideas
in Chapter 30 of his book Selected Papers on Discrete Mathe-
matics.

6. Twelve matches can be used to form a right triangle with sides
of three, four and five units, as shown in Figure 65. This triangle
will have an area of six square units. By altering the position of
three matches as shown at right in the illustration, we remove
two square units, leaving a polygon with an area of four square
units.
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Figure 65. (Artist: James Egleson.)

This solution is found in many puzzle books. There are hun-
dreds of other solutions. Elton M. Palmer, Oakmont, Pennsylva-
nia, correlated this problem with the polyominoes of Chapter
13, pointing out that each of the five tetrominoes (figures made
with four squares) can provide the base for a large number of
solutions. We simply add and subtract the same amount in tri-
angular area to accommodate all 12 matches. Figure 66 depicts
some representative samples, each row based on a different
tetromino.

Eugene J. Putzer, staff scientist with the General Dynamics
Corporation; Charles Shapiro, Oswego, New York; and Hugh J.
Metz, Oak Ridge, Tennessee, suggested the star solution shown
in Figure 67. By adjusting the width of the star’s points you
can produce any desired area between 0 and 11.196, the area

Figure 66. (Artist: James Egleson.)
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Figure 67. (Artist: James Egleson.)

of a regular dodecagon, the largest area possible with the 12
matches.

7. Without resorting to calculus, the problem can be solved as fol-
lows. Let R be the radius of the sphere. As Figure 68 indicates,
the radius of the cylindrical hole will then be the square root of
R 2 – 9, and the altitude of the spherical caps at each end of the
cylinder will be R – 3. To determine the residue after the cylinder
and caps have been removed, we add the volume of the cylin-
der, 6π(R 2 – 9), to twice the volume of the spherical cap, and
subtract the total from the volume of the sphere, 4π R 3/3. The
volume of the cap is obtained by the following formula, in which
A stands for its altitude and r for its radius: πA(3r 2 + A2)/6.

When this computation is made, all terms obligingly cancel
out except 36π – the volume of the residue in cubic inches. In
other words, the residue is constant regardless of the diameter
of the hole or the size of the sphere!

The earliest reference I have found for this beautiful problem
is on page 86 of Samuel I. Jones’s Mathematical Nuts, 1932. A
two-dimensional analog of the problem appears on page 93 of

Figure 68. (Artist: James Egleson.)
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Figure 69

the same volume. Given the longest possible straight line that
can be drawn on a circular track of any dimensions (see Fig-
ure 69), the area of the track will equal the area of a circle having
the straight line as a diameter.

John W. Campbell, Jr., editor of Astounding Science Fiction,
was one of several readers who solved the sphere problem
quickly by reasoning adroitly as follows: The problem would
not be given unless it has a unique solution. If it has a unique
solution, the volume must be a constant that would hold even
when the hole is reduced to zero radius. Therefore the residue
must equal the volume of a sphere with a diameter of six inches,
namely 36π .

8. At any given instant the four bugs form the corners of a square
which shrinks and rotates as the bugs move closer together. The
path of each pursuer will therefore at all times be perpendicular
to the path of the pursued. This tells us that as A, for example,
approaches B, there is no component in B’s motion that carries
B toward or away from A. Consequently, A will capture B in the
same time that it would take if B had remained stationary. The
length of each spiral path will be the same as the side of the
square: 10 inches.

If three bugs start from the corners of an equilateral triangle,
each bug’s motion will have a component of 1/2 (the cosine of
a 60-degree angle is 1/2) its velocity that will carry it toward its
pursuer. Two bugs will therefore have a mutual approach speed
of 3/2 velocity. The bugs meet at the center of the triangle after
a time interval equal to twice the side of the triangle divided by
three times the velocity, each tracing a path that is 2/3 the length
of the triangle’s side.
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The four-bug problem, and its generalizations, are discussed
more fully in Chapter 24 of my Book 5.

9. When Jones began to work on the professor’s problem he knew
that each of the four families had a different number of chil-
dren and that the total number was less than 18. He further
knew that the product of the four numbers gave the profes-
sor’s house number. Therefore his obvious first step was to fac-
tor the house number into four different numbers that together
would total less than 18. If there had been only one way to do
this, he would have immediately solved the problem. Since he
could not solve it without further information, we conclude that
there must have been more than one way of factoring the house
number.

Our next step is to write down all possible combinations of
four different numbers that total less than 18, and obtain the
products of each group. We find that there are many cases where
more than one combination gives the same product. How do we
decide which product is the house number?

The clue lies in the fact that Jones asked if there was more
than one child in the smallest family. This question is meaning-
ful only if the house number is 120, which can be factored as
1 × 3 × 5 × 8, 1 × 4 × 5 × 6, or 2 × 3 × 4 × 5. Had Smith answered
“No,” the problem would remain unsolved. Since Jones did
solve it, we know the answer was “Yes.” The families therefore
contained 2, 3, 4, and 5 children.

This problem was originated by Lester R. Ford and pub-
lished in the American Mathematical Monthly, March 1948, as
Problem E776.



CHAPTER THIRTEEN

Polyominoes

Solomon Golomb surprised
Stuffy people who’d not realised
That by adding a square
To the ones that were there
Dominoes could be generalized.

– Anonymous. From the British periodical Mathematical Pie,
No. 169, Autumn 2006.

the term “polyomino” was introduced by Solomon W. Golomb,
senior research mathematician in the Jet Propulsion Laboratory
of the California Institute of Technology. In his article “Checker
Boards and Polyominoes” (published in the American Mathematical
Monthly in 1954 when Golomb was a 22-year-old graduate student
at Harvard) he defined a polyomino as a “simply connected” set of
squares. By this is meant a set of squares joined along their edges. A
chess player might say, Golomb adds, that they are “rookwise con-
nected,” because a rook could travel from any square to any other
square in a finite number of moves. Figure 70 shows a monomino
and all varieties of polyominoes with two, three, and four connected
squares.

There is only one type of domino, two trominoes, and five tetro-
minoes. When we turn to the pentominoes (five squares) the num-
ber jumps to 12. These are shown in Figure 71. Asymmetrical pieces,
which have a different shape when “turned over,” are considered as
single types. In all the polyomino recreations to be taken up in this
chapter, asymmetrical pieces may be placed in either of their two
mirror-image forms.
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MONOMINO

DOMINO

STRAIGHT TROMINO

STRAIGHT
TETROMINO

SQUARE TETROMINO

T-TETROMINO

L-TETROMINO

SKEW TETROMINO

RIGHT TROMINO

Figure 70. The monomino, the domino, the two trominoes, and the five tetro-
minoes.

The number of distinct polyominoes of any order is clearly a
function of the number of squares in each, but so far no one has suc-
ceeded in finding a formula relating the number of n-ominoes to n.
To compute the number of polyominoes of higher orders, one must
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Figure 71. The twelve pentominoes.

fall back on time-consuming procedures when n is large. There are
35 distinct varieties of hexominoes and 108 varieties of heptomi-
noes. This latter figure includes the debatable heptomino shown in
Figure 72. In most polyomino recreations, it is best to exclude forms
of this type (there are six of them among the octominoes), which
have interior “holes.” In 2007, the exact number of n-ominoes was
known through n = 28.

In Chapter 3 (problem 3) we considered a polyomino problem
dealing with the placing of dominoes on a mutilated checkerboard.
Golomb’s article discusses a variety of intriguing similar problems



140 Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi

Figure 72.

involving higher-order polyominoes. It obviously is not possible to
cover an 8 × 8 checkerboard with trominoes (because 64 squares
are not evenly divisible by 3), but can it be covered with 21 straight
trominoes and one monomino? By a clever system of coloring the
squares with three colors, Golomb shows this to be possible only
when the monomino is placed on one of the four darkened squares
in Figure 73. On the other hand, an ingenious induction argument
demonstrates that 21 right trominoes and one monomino will cover
the 8 × 8 board regardless of where the monomino is placed. It also
is possible to cover the board with 16 tetrominoes provided they
are all of the same species, the only exception being the skew tetro-
mino, which will not even cover a single edge of the checkerboard.
A striped coloring of the board serves to prove that it cannot be cov-
ered with 15 L-tetrominoes and one square tetromino; a sawtooth
coloring proves it cannot be covered with a square tetromino plus
any combination of straight and skew tetrominoes.

Turning to the pentominoes of Figure 70, the question immedi-
ately suggests itself: Will these 12 forms, together with one square

Figure 73.
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Figure 74. T. R. Dawson’s proof.

tetromino, form an 8 × 8 checkerboard? The first published solution
of this problem appears in Henry Dudeney’s The Canterbury Puz-
zles, 1907. In Dudeney’s solution, the square occupies a side posi-
tion. About 20 years ago, the readers of an obscure British publi-
cation called The Fairy Chess Review (fairy chess is chess played
with unusual rules, boards, or pieces) began experimenting with
Dudeney’s problem as well as with other pentomino and hex-
omino patterns. The most interesting results were summarized in
the December 1954 issue of the magazine. Much of what follows
is drawn from this issue and an unpublished article by Golomb
in which he deals with parallel but independently discovered
theorems.

T. R. Dawson, founder of The Fairy Chess Review, was the first
to devise a delightfully simple way to prove that Dudeney’s prob-
lem can be solved with the square at any position on the board. His
three-part solution is depicted in Figure 74. The square tetromino
is combined with the L-shaped pentomino to form a 3 × 3 square.
By rotating the larger square, the square tetromino can be brought
to four different positions in each of the three configurations. Since
the entire checkerboard can be both rotated and reflected, it is easy
to see that the square tetromino can be placed at any desired spot
on the board.

No one knows how many different solutions of this problem there
are altogether, but a conservative guess is that there are more than
10,000. In 1958, Dana S. Scott (then a mathematics graduate stu-
dent at Princeton University, working under contract with the Infor-
mation Systems Branch of the Office of Naval Research) instructed
MANIAC, a digital computer, to search for all possible solutions that
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Figure 75.

had the square piece exactly in the center. In an operating time of
about three and one-half hours the machine produced an exhaus-
tive list of 65 distinct solutions, not counting additional solutions
that can be obtained by rotations and reflections.

In programming the computer, it was convenient to break down
the solutions into three categories, each defined by the position of
the cross relative to the central square. A solution in each category
is shown in Figure 75. The machine found 20 solutions of the first
type, 19 of the second type, and 26 of the third.

An inspection of the 65 solutions discloses a number of interest-
ing facts. No solution is possible in which the straight pentomino
does not have a long side flush with an edge of the board. (This
does not hold for solutions with the square in other positions than
the center.) Seven solutions (all in the first and third categories) are
without crossroads, that is, points where the corners of four pieces
meet. The first solution in Figure 75 is of this type. From an artistic
standpoint, some polyomino experts have considered crossroads to
be blemishes in a design. The third solution of Figure 75 illustrates
another interesting feature: a straight line on which the pattern can
be folded in half. There are 11 patterns of this type, all in the third
category and none free of crossroads.

If the square tetromino is discarded and four disconnected unit
squares are left open, the 8 × 8 checkerboard can still be formed in a
large number of artistic ways. Three such patterns are shown in Fig-
ure 76. It also is possible to fit the 12 pentominoes into rectangles
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Figure 76.

Figure 77. Pentomino rectangles.
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Figure 78. Triplication patterns.

that are 6 × 10, 5 × 12, 4 × 15, and 3 × 20 (see Figure 77). The
3 × 20 rectangle, by all odds the most difficult, is left for the inter-
ested reader to construct. It has only two distinct solutions, not
counting rotations and reflections.

Note that the 5 × 12 rectangle in Figure 76 is shown here with a
solution that contains a 5 × 7 and a 5 × 5 rectangle. Several readers
discovered the two 5 × 6 rectangles shown in Figure 78, which can
be put together to make either a 5 × 12 or a 6 × 10 rectangle.

Raphael M. Robinson, professor of mathematics at the University
of California, recently proposed what he calls “the triplication prob-
lem.” You select one pentomino and then use nine of the remaining
ones to form a large scale-model of the chosen piece. The model
will be three times higher and wider than the small one. Joseph
B. Tucker, rector of Trinity Episcopal Church in Clarksville, Ten-
nessee, independently hit on the triplication problem after read-
ing this department’s discussion of pentominoes. He sent in many
excellent solutions, including the two shown in Figure 79. The trip-
lication problem can be solved for each of the 12 pieces.

Figure 79.
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Figure 80. “Double double” pattern.

Somewhat similar problems were proposed by other readers.
Harry Brueggemann of San Marino, California, suggested what he
termed the “double double problem.” You first form any desired
shape with two pentominoes. You duplicate it with two other pieces.
Finally, the remaining eight pieces are used to form the same shape
but twice as large. Figure 80 shows a typical solution. Paul J. Slate of
West Orange, New Jersey, proposed using all 12 pieces to make a 5 ×
13 rectangle with a hole in the shape of one of the pieces. It can be
solved with a hole in the form of each pentomino. One such solution
is depicted in Figure 81.

Another interesting pentomino problem, proposed in The Fairy
Chess Review by H. D. Benjamin, is shown in Figure 82. The 12 pen-
tominoes will exactly cover a cube that is the square root of 10 units

Figure 81. A pentomino cube.
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Figure 82. The pentomino game.

on the side. The cube is formed by folding the pattern along the dot-
ted lines.

What is the minimum number of pentominoes that can be placed
on a checkerboard in such a way that it is impossible to place any of
the remaining pentominoes on the board? This intriguing question
is asked by Golomb, and he says the answer is five. Figure 83 shows
one such configuration. This problem suggested to Golomb a fasci-
nating competitive game that can be played on a checkerboard with
large cardboard pentominoes cut to fit accurately over the board’s
squares. (The reader is invited to make such a set, not only to enjoy
the game, but also to solve pentomino problems and create new
ones.)

Two or more players take turns in choosing a single pentomino
and placing it wherever they wish on the board. The pieces have
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Figure 83.

no “top” or “bottom” faces. As in all problems mentioned in this
article, asymmetrical pieces may be used with either side up. The
first player who is unable to place a piece is the loser.

Golomb writes:

The game will last at least five and at most 12 moves, can never result
in a draw, has more possible openings than chess, and will intrigue
players of all ages. It is difficult to advise what strategy should be fol-
lowed, but there are two valuable principles:

1. Try to move in such a way that there will be room for an even
number of pieces. (This assumes only two are playing.)

2. If you cannot analyze the situation, do something to complicate
the position, so that the next player will have even more diffi-
culty analyzing it than you did.

Since the 35 hexominoes have a total area of 210 squares, one
thinks immediately of arranging them to form a rectangle that could
be 3 × 70, 5 × 42, 6 × 35, 7 × 30, 10 × 21, or 14 × 15. I seriously
considered offering $1,000 to the first reader who succeeded in con-
structing one of these six rectangles, but the appalling thought of
hours that might be wasted on the challenge forced me to relent. All
such efforts are doomed to failure. Golomb’s proof of this is a strik-
ing example of the use of two powerful tools of combinatorial geom-
etry. This is a little known branch of mathematics, though it has
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many practical applications to engineering design problems involv-
ing standard components that must be fitted together in the most
efficient manner. The tools are (1) the use of contrasting colors to aid
one’s mathematical intuition and (2) the principle of “parity check”
based on the combinatorial properties of odd and even numbers.

We begin the proof by coloring our desired rectangles with alter-
nating black and white squares like a checkerboard. In each case,
the rectangle clearly must contain 105 black squares and 105 white –
an odd number for each.

Turning our attention to the 35 hexominoes, we discover that 24
of them will always cover three black squares and three white – an
odd number for each. There is an even number of these “odd hex-
ominoes,” and since even times odd is even, we know that all 24 of
them will cover an even number of squares of each color.

The remaining 11 hexominoes are of such a shape that each must
cover four squares of one color and two of the other – an even num-
ber for each. There is an odd number of these “even hexominoes,”
but again, since even times odd is even, we know that these 11
pieces also will cover an even number of squares of each color. (Fig-
ures 84 and 85 divide the 35 hexominoes into even and odd groups.)
Finally, since even plus even is even, we conclude that the 35 hex-
ominoes together will cover an even number of black squares and an
even number of white squares. Unfortunately each rectangle con-
tains 105 squares of each color. This is an odd number. No rectangle,
therefore, can be covered by the 35 hexominoes.

“There is a lesson in plausible reasoning to be learned from these
problems,” Golomb concludes.

Given certain basic data, we labor long and hard to fit them into a
pattern. Having succeeded, we believe the pattern to be the only one
that “fits the facts”; indeed, that the data are merely manifestations of
the beautiful, comprehensive whole. Such reasoning has been used
repeatedly in religion, in politics, even in science. The pentominoes
illustrate that many different patterns may be possible from the same
“data,” all equally valid, and the nature of the pattern we end up with
is determined more by the shape we are looking for than by the data
at hand. It is also possible that for certain data [as in the hexomino
problem explained previously], no pattern of the type we are condi-
tioned to seek may exist.
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Figure 84. The 24 “odd” hexominoes.

ADDENDUM

For readers who may wish to experiment with hexomino patterns, I
add here (Figures 86 and 87) two striking designs reproduced from
The Fairy Chess Review. Each is formed with the complete set of
35 hexominoes. Patterns using the entire set cannot be made unless
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Figure 85. The 11 “even” hexominoes.

Figure 86. A hexomino pattern.
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Figure 87. Another hexomino design.

a checkerboard coloring of the squares shows an excess of squares
of one color in the amount of 2, 6, 10, 14, 18, or 22.

A box of colored plastic pentominoes was marketed in 1957 by
Tryne Products, Inc. under the trade name of Hexed.

AFTERWORD, 1988

So many articles have appeared about polyominoes, polycubes
(joined cubes), polyhexes (joined hexagons), and tetrominoes
(joined right-angle isosceles triangles) that I have made no attempt
to cover this literature in my bibliography. Readers are referred to
the references cited in chapters about polyominoes in my later book
collections of columns, and to issues of the Journal of Recreational
Mathematics in which dozens of articles and problems involving
polyominoes have been published. Sets of polyominoes and their
cousins appear on the market from time to time in various coun-
tries. A handsome wooden set of solid pentominoes (the 12 pen-
tominoes with unit thickness) is currently available from Kadon
Enterprises, 1227 Lorene Drive, Pasadena, MD 21122. They can be
used both for problems on the plane and in three dimensions.
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POSTSCRIPT

Since I introduced the mathematical community to Sol Golomb’s
polyominoes, the literature involving these fascinating shapes has
become enormous. Golomb’s 1965 book Polyominoes was reissued
in a much revised edition by Princeton University Press in 1994.
It has a bibliography of earlier references. George Edward Martin’s
Polyominoes: A Guide to Puzzles and Problems in Tiling, was pub-
lished by the Mathematical Association of America in 1991.

Dozens of problems involving polyominoes are scattered
throughout chapters in later books of my Scientific American col-
umns, and even a larger number of such problems have appeared
in issues of the Journal of Recreational Mathematics. Polyominoes’
cousins, the polyiamonds, polyhexes, and polyaboloes, are topics of
chapters in later books in this series, as are the solids called poly-
cubes of which Piet Hein’s Soma Cube is the most famous such
puzzle.

Naoaki Takashima, of Tokyo, at an Atlanta Gathering for Gard-
ner (March 2004), lectured on the task of covering a unit cube with
the 12 pentominoes and distributed a privately published mono-
graph titled “Pentomino Cube Solutions.” It covers recent computer
programs that have found tens of thousands of different solutions,
the exact number depending on how “different” is defined. C. J.
Bouwkamp, of Eindhoven University of Technology, in the Nether-
lands, found 26,358,584 solutions of which 284,402 were called
“nice.” A nice solution is one in which none of the three cells at a
cube’s corners are occupied by the same pentomino. His results are
given in his university’s 1998 Report 97-WSK-01. They were verified
by Takashima’s program, implemented by Kayoko Sakai.

In the December 1990 issue of the Dutch periodical Cubism for
Fun, I posed the task of covering a unit cube with n congruent poly-
gons, n greater than 1. The case of n = 2 is easily solved by two
3 × 1 rectangles. Because each rectangle can be divided into n iden-
tical rectangles, it follows that the cube can be tiled with any even
number of congruent rectangles.

The n = 3 case is also easily solved by three 2 × 1 rectangles.
Again, each rectangle can be cut into n congruent rectangles; there-
fore, the cube can be covered by n congruent rectangles when n is a
multiple of 3.
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Figure 88. Tiling the cube with five cross hexominoes. (Artist: Harold Jacobs.)

The case of n = 5 can be solved by the Latin cross hexomino as
shown in Figure 88. This pattern appeared in Mathematics Maga-
zine, Vol. 50 (1977), pp. 158–178. In 1998, Bouwkamp reported that
his computer program found 1,054 solutions with twelve identical
pentominoes of which 164 were “nice.” Pieter Torbijn discusses
the general problem of tiling a cube with identical polyominoes
in Cubism for Fun, Vol. 58, July 2002; Vol. 59, November 2002; and
Vol. 61, July 2003. The latter issue also has an article on the general
topic by Markus Götz.

In my Cubism for Fun article I offered $50 to anyone who could
solve the next higher case, n = 7. To my great surprise, the prize was
won by Anneke Treep who found four different strips, each of which
can be sliced into n congruent parts! This, of course, solves the gen-
eral problem for all n!

Figure 89 shows how the first strip can be divided into n iden-
tical polygons. The other three strips can be divided in a simi-
lar way. Treep explained this in her article “Covering a Cube” in
Cubism for Fun, Vol. 27, December 1991, pp. 16–17. My piece in
which I offered the prize, followed by pictures showing Treep’s solu-
tion for any n, is reprinted in Gardner’s Workout (A K Peters, 2001),
Chapter 8.

The Spring 2007 issue of the British periodical Pie describes two
polyomino cousins, the polyiamonds (made with equilateral trian-
gles) and the polyaboloes (made with right triangles). Both families
are topics of chapters in later books of this series.
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Figure 89. Covering a cube with n congruent polygons. (Artist: Harold Jacobs.)

Suppose, Pie continues, we consider a new family called poly-
cornoes. They are made with unit squares, joined at their corners
instead of their sides as shown in Figure 91. Pie asked: How many
different shapes (not counting rotations and reflections) can be
made by joining n squares?

The surprising answer, proved by the pieces shown in Figure 90,
is that the number of polycornoes of n squares is exactly the same

Figure 90. (Artist: Harold Jacobs.)
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n = 2 n = 3

n = 4

n = 5

Figure 91. (Artist: Harold Jacobs.)



156 Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi

as the number of polyominoes of n squares! In other words, the two
families are duals.
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CHAPTER FOURTEEN

Fallacies

a mathematical paradox can be defined as a mathematical truth
so startling that it is difficult to believe even after every step of its
proof has been verified. Mathematical fallacies are equally aston-
ishing assertions, but unlike mathematical paradoxes their proofs
contain subtle errors. Every branch of mathematics, from simple
arithmetic to topological set theory, has its share of these counter-
feit arguments. The better ones are of course those with the most
incredible conclusions and the best-camouflaged errors. Euclid
devoted an entire book to geometrical fallacies, but his manuscript
did not survive, so we can only speculate on what this lost classic of
recreational mathematics may have contained.

The following seven fallacies have been selected for their variety
and interest. They will not be explained, but the reader may find it
pleasant and instructive to seek out their errors.

Our first fallacy is an exceedingly elementary one. We shall
introduce it by way of an amusing paradox that David Hilbert, the
great German mathematician, liked to employ to illustrate one of
the peculiar properties of aleph-null, the smallest of the transfinite
numbers. It seems that the manager of a celestial hotel with an
infinite number of rooms, all occupied, wishes to accommodate
a new guest. He does so by moving each occupant to a room with
the next highest number, thereby vacating Room 1. What can he
do if an infinite number of new guests arrive? The undismayed
manager simply shifts each occupant to a room that has a number
twice as large as that of his first room; the guest in Room 1 goes to
Room 2, the guest in 2 goes to 4, 3 to 6, 4 to 8, and so on. This opens
up all the odd-numbered rooms, which will accommodate every
one.

157



158 Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi

But is it really necessary that the number of occupied rooms be
infinite before additional guests can be accommodated? The follow-
ing doggerel from a late nineteenth-century British magazine tells
how a clever innkeeper with nine empty rooms had no difficulty in
providing separate lodgings for each of ten travelers.

Ten weary, footsore travelers,
All in a woeful plight,
Sought shelter at a wayside inn
One dark and stormy night.

“Nine rooms, no more,” the landlord said,
“Have I to offer you.
To each of eight a single bed,
But the ninth must serve for two.”

A din arose. The troubled host
Could only scratch his head,
For of those tired men no two
Would occupy one bed.

The puzzled host was soon at ease –
He was a clever man –
And so to please his guests devised
This most ingenious plan.

In room marked A two men were placed,
The third was lodged in B,
The fourth to C was then assigned,
The fifth retired to D.

In E the sixth he tucked away,
In F the seventh man,
The eighth and ninth in G and H,
And then to A he ran,

Wherein the host, as I have said,
Had laid two travelers by;
Then taking one – the tenth and last –
He lodged him safe in I.

Nine single rooms – a room for each –
Were made to serve for ten;
And this it is that puzzles me
And many wiser men.
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A slightly more sophisticated fallacy is the following algebraic
proof that any number a is equal to a smaller number b.

a = b + c

Multiply both sides by a − b to obtain

a 2 − ab = ab + ac − b2 − bc

Subtract ac from each side:

a 2 − ab − ac = ab − b2 − bc

Factor:

a(a − b − c) = b(a − b − c)

Divide each side by a − b − c to get

a = b

Manipulation of the imaginary number i (the square root of −1)
has many pitfalls, as witnessed by the following tantalizing proof:

√−1 = √−1√
1

−1
=

√
−1
1

√
1√−1

=
√−1√

1
√

1 ×
√

1 = √−1 × √−1

1 = −1

In plane geometry most fallacies hinge on an improperly con-
structed diagram. Consider for example this perplexing demonstra-
tion that the front side of a polygon cut out of a piece of paper has
an area that differs from that of the back side. The demonstration
was devised by L. Vosburgh Lyons, a New York neuropsychiatrist, to
exploit a curious principle recently discovered by Paul Curry, also of
New York.

First draw on a sheet of graph paper the 60-square-unit triangle
shown in Figure 92. Cut along the lines to make six pieces and then
color the back of each piece. If all six pieces are turned over and a
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Figure 92. The Curry triangle. (Artist: Bunji Tagawa.)
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colored triangle formed as shown in the middle of the illustration,
it will be found that the triangle has developed a hole of two square
units. In other words, its area has shrunk to 58 square units. If we
turn three pieces so that their white sides are uppermost, leaving
three colored pieces, we can form the figure shown at the bottom
of the illustration. This has the in-between area of 59 square units.
Something is obviously wrong here, but what?

Probability theory swarms with plausible but specious lines of
reasoning. Suppose you have just met your friend Jones and each
of you is wearing a necktie that you received as a Christmas present.
You begin to argue over which of you received the more expensive
tie. You and Jones finally agree to settle the matter by visiting the
store where both ties were bought and checking their value. The
man who wins (i.e., has the most expensive tie) must give his tie to
the loser as a consolation.

This is how you reason: “The chances that I will win the argument
or lose it are equal. If I win, I will be poorer by the value of this tie
I am wearing. But if I lose, I am sure to gain a more expensive tie.
Therefore, the contest is clearly to my advantage.”

Of course Jones can reason in exactly the same way. How can a
bet be favorable to both parties?

One of the most surprising paradoxes of topology is the fact that a
torus (a doughnut-shaped surface) can be turned inside out through
a hole in its side by stretching the surface without tearing it. There is
no question about this. When the steps in the process were depicted
in Scientific American for January 1950, a New Jersey engineer actu-
ally shipped the magazine in an inner tube that he had reversed.
But if this can be done, then an even more remarkable fact seems to
emerge.

On the outside of a torus paint the ring at right in the upper illus-
tration of Figure 93. On the inside of the same torus paint a sec-
ond ring. These two closed curves are clearly linked. The torus is
now turned inside out through the hole. As the bottom illustration
shows, this moves the first ring to the inside and the second ring to
the outside. The rings are no longer linked! This obviously violates a
fundamental topological law that states that two linked curves can-
not be separated without breaking one curve and passing the other
through the break.
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Figure 93. Two linked rings appear to unlink when torus is turned inside out
through hole in its side. (Artist: Bunji Tagawa.)

Our final fallacy, which draws on elementary number theory,
concerns “interesting” versus “uninteresting” numbers. Numbers
can of course be interesting in a variety of ways. The number 30 was
interesting to George Moore when he wrote his famous tribute to
“the woman of 30,” the age at which he believed a married woman
was most fascinating. To a number theorist, 30 is more likely to be
exciting because it is the largest integer such that all smaller integers
with which it has no common divisor are prime numbers. The num-
ber 15,873 is intriguing because if you multiply it by any digit and
then by 7, the result will consist entirely of repetitions of the cho-
sen digit. The number 142,857 is even more fascinating. Multiply it
by any digit from 1 through 6 and you get the same six digits in the
same cyclic order.
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The question arises: Are there any uninteresting numbers? We
can prove that there are none by the following simple steps. If there
are dull numbers, we can then divide all numbers into two sets –
interesting and dull. In the set of dull numbers, there will be only
one number that is the smallest. Since it is the smallest uninterest-
ing number it becomes, ipso facto, an interesting number. We must
therefore remove it from the dull set and place it in the other. But
now there will be another smallest uninteresting number. Repeat-
ing this process will make any dull number interesting.

ADDENDUM

Two readers favored me with ninth stanzas for the poem about the
ten weary, footsore travelers. (This poem appeared, by the way, in
the magazine Current Literature, Vol. 2, April 1889, page 349. No
author’s name is given, but it is credited to the Pittsburgh Bulletin,
no date. The paradox is much older than the poem; still it would be
interesting to know who gave it this poetic form.) Ralph W. Allen of
Los Angeles wrote:

I had not heard the din that night
As number ten raised hue and cry –
‘Twas number two – not number ten –
That bedded down in room marked I.

John F. Mooney, of the Ebasco International Corporation, New
York, New York, exposed the fallacy this way:

If we reflect on what he’s done
We’ll see we’re not insane.
Two men in A, he’s counted one,
Not once, but once again.

The fallacy that disturbed most readers was the one about the
inside-out torus. It is true that the torus can be reversed, but the
reversal changes the “grain,” so to speak, of the torus. As a result,
the two rings exchange places and remain linked. Several readers
made excellent models by cutting off the upper part of a sock, then
sewing the ends of the upper part together to make the torus. The
rings consisted of thread, in two contrasting colors, stitched to the



164 Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi

outside and inside of the cloth torus. Such a torus reverses easily
through a hole in the side, demonstrating most effectively exactly
what happens to the rings.

The necktie paradox is fully discussed in Maurice Kraitchnik’s
Mathematical Recreations, a Dover book.

The closing “proof” that no numbers are uninteresting prompted
the following telegram from Dave Engle, at the College of Puget
Sound, Tacoma, Washington:

per january scientific american suggest that just short of infin-
ity you cease snipping off and removing dull numbers. at least
save one for interest’s sake!

POSTSCRIPT

Variations on the Curry triangle paradox, and related “geometri-
cal vanishes,” can be found in my Mathematics, Magic, and Mys-
tery (Dover, 1956). My major contribution to such flummery, a
square with a large hole that appears in the center when pieces are
reassembled a different way, is in Chapter 10 of my Book 3.

Many variations on Curry rectangles have been marketed as
magic tricks and advertising premiums. Magic shops sell a large
playing card that develops a hole when the pieces are turned over
and put together again, and a dollar bill that loses the face of George
Washington when its four pieces are reassembled. There was even
a pornographic version marketed many years ago in Japan that fea-
tured a picture of a nude young woman on one side.

Geometric fallacies, such as a classic proof that all triangles are
isosceles, and that a right angle equals an obtuse angle, are covered
in Chapter 6 of Book 10.
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CHAPTER FIFTEEN

Nim and Tac Tix

one of the oldest and most engaging of all two-person math-
ematical games is known today as Nim. Possibly Chinese in origin,
it is sometimes played by children with bits of paper, and by adults
with pennies on the counter of a bar. In the most popular version of
the game 12 pennies are arranged in three horizontal rows as shown
in Figure 94.

The rules are simple. The players alternate in removing one or
more coins provided they all come from the same horizontal row.
Whoever takes the last penny wins. The game can also be played in
reverse: Whoever takes the last penny loses. A good gamester soon
discovers that in either form of the game he can always win if one
of his moves leaves two rows with more than one penny in a row
and the same number in each; or if the move leaves one penny in
one row, two pennies in a second row and three in a third. The first
player has a certain win if on his first move he takes two pennies
from the top row and thereafter plays “rationally.”

There is nothing startling about the foregoing analysis, but
around the turn of the century an astonishing discovery was made
about the game. It was found that it could be generalized to any
number of rows with any number of counters in each, and that an
absurdly simple strategy, using binary numbers, would enable any-
one to play a perfect game. A full analysis and proof was first pub-
lished in 1901 by Charles Leonard Bouton, associate professor of
mathematics at Harvard University. It was Bouton, incidentally, who
named the game Nim, presumably after the archaic English verb
meaning to take away or steal.

In Bouton’s terminology every combination of counters in the
generalized game is either “safe” or “unsafe.” If the position left by
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Figure 94. Twelve counters are arranged for a “3, 4, 5” game of Nim.

a player after his move guarantees a win for that player, the position
is called safe. Otherwise it is unsafe. Thus in the “3, 4, 5” game pre-
viously described the first player leaves a safe position by taking two
pennies from the top row. Every unsafe position can be made safe
by a proper move. Every safe position is made unsafe by any move.
To play rationally, therefore, a player must move so that every unsafe
position left to him is changed to a safe position.

To determine whether a position is safe or unsafe, the numbers
for each row are written in binary notation. If each column adds up
to zero or an even number, then the position is safe; otherwise, it is
not.

There is nothing mysterious about the binary notation. It is
merely a way of writing numbers by sums of the powers of two. The
chart of Figure 95 shows the binary equivalents of the numbers 1
through 20. You will note that each column, as you move from right
to left, is headed by a successively higher power of two. Thus the
binary number 10101 tells us to add 16 to 4 to 1, giving us 21 as
its equivalent in the decimal system, based on the powers of 10. To
apply the binary analysis to the 3, 4, 5 starting position of Nim, we
first record the rows in binary notation as follows:

4 2 1

3 1 1

4 1 0 0

5 1 0 1

Totals 2 1 2
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16

1

1

1

248

2 01

3 11

4 001

5 101

6 011

7 111

8 0001

9 1001

10 0101

11 1101

12 0011

13 1011

14 0111

15 1111

16 00001

17 10001

18 01001

19 11001

20 00101

Figure 95. Table of binary numbers for playing Nim.

The middle column adds up to 1, an odd number, telling us that
the combination is unsafe. It can therefore be made safe by the first
player. He does so, as explained, by taking two pennies from the top
row. This changes the top binary number to 1, thereby eliminating
the odd number from the column totals. The reader will discover
by trying other first moves that this is the only one that makes the
position safe.
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An easy way to analyze any position, provided there are no more
than 31 counters in one row, is to use the fingers of your left hand
as a binary computer. Suppose the game begins with rows of 7, 13,
24, and 30 counters. You are the first player. Is the position safe or
unsafe? Extend all five fingers of your left hand, palm toward you.
The thumb registers units in the 16 column; the index finger, those
in the 8 column; the middle finger, the 4 column; the ring finger,
the 2 column; the little finger, the 1 column. To feed 7 to your com-
puter, first bend down the finger representing the largest power of 2
that will go into 7. It is 4, so you bend your middle finger. Continue
adding powers of two, moving to the right across your hand, until
the total is 7. This is of course reached by bending the middle, ring
and little fingers. The remaining three numbers – 13, 24, and 30 – are
fed to your computer in exactly the same way except that any bent
finger involved in a number is raised instead of lowered.

Regardless of how many rows there are in the game, if you finish
this procedure with all your fingers raised, then the position is safe.
This means that your move is sure to make it unsafe, and that you
are certain to lose against any player who knows as much about Nim
as you do. In this example, however, you finish with first and second
fingers bent, telling you that the position is unsafe, and that you can
win if you make a proper move. Because there are many more unsafe
combinations than safe ones, the odds greatly favor the first player
when the starting position is determined at random.

Now that you know that 7, 13, 24, 30 is unsafe, how do you find a
move that will make it safe? This is difficult to do on your fingers, so
it is best to write down the four binary numbers as follows:

16 8 4 2 1

7 1 1 1

13 1 1 0 1

24 1 1 0 0 0

30 1 1 1 1 0

Totals 2 3 3 2 2

Note the column farthest to the left that adds up to an odd num-
ber. Any row with a unit in this column can be altered to make the
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position safe. Suppose you wish to remove a counter or counters
from the second row. Change the first unit to 0; then adjust the
remaining figures on the right so that no column will add up to an
odd number. The only way to do this is to change the second binary
number to 1. In other words, you remove all counters except one
from the second row. The other two winning moves would be to take
4 from the third row or 12 from the last row.

It is helpful to remember that you can always win if you leave two
rows with the same number of counters in each. From then on, sim-
ply move each time to keep the rows equal. This rule, as well as the
preceding binary analysis, is for the normal game in which you win
by taking the last counter. Happily only a trivial alteration is required
to adopt this strategy to the reverse game. When the reverse game
reaches a point (as it must) at which only one row has more than
one counter, you must take either all or all but one counter from
that row so as to leave an odd number of one-unit rows. Thus if the
board shows 1, 1, 1, 3, you take the entire last row. If it shows 1, 1, 1,
1, 8, you take seven from the last row. This modification of strategy
occurs only on your final move, when it is easy to see how to win.

Since digital computers operate on the binary system, it is not
difficult to program such a computer to play a perfect game of
Nim or to build a special machine for this purpose. Edward U.
Condon, the former director of the National Bureau of Standards
who is now head of the physics department at Washington Uni-
versity in St. Louis, was a co-inventor of the first such machine.
Patented in 1940 as the Nimatron, it was built by the Westinghouse
Electric Corporation and exhibited in the Westinghouse building at
the New York World’s Fair. It played 100,000 games and won 90,000.
Most of its defeats were administered by attendants demonstrating
to skeptical spectators that the machine could be beaten.

In 1941 a vastly improved Nim-playing machine was designed by
Raymond M. Redheffer, now assistant professor of mathematics at
the University of California at Los Angeles. Redheffer’s machine has
the same capacity as Condon’s (four rows with as many as seven
counters in each), but where Nimatron weighed a ton and required
costly relays, Redheffer’s machine weighs 5 pounds and uses only
four rotary switches. Ten years later, a Nim-playing robot called
Nimrod was exhibited at the Festival of Britain in 1951 and later at
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the Berlin Trade Fair. According to an account by A. M. Turing (in
Chapter 25 of Faster Than Thought, edited by B. V. Bowden, 1953),
the machine was so popular in Berlin that visitors “entirely ignored
a bar at the far end of the room where free drinks were available,
and it was necessary to call out special police to control the crowds.
The machine became even more popular after it had defeated the
economics minister, Dr. Erhard, in three games.”

Among many variations of Nim that have been fully analyzed,
one proposed in 1910 by the American mathematician Eliakim H.
Moore is of special interest. The rules are the same as they are for
regular Nim except that players are permitted to take from any num-
ber of rows not exceeding a designated number k. Surprisingly, the
same binary analysis holds, provided a safe position is defined as
one in which every column of the binary numbers totals a number
evenly divisible by (k + 1).

Other variations of Nim seem not to have any simple strategy for
rational play. To my mind the most exciting of these as yet unan-
alyzed versions was invented about 10 years ago by Piet Hein of
Copenhagen. (Piet Hein is the inventor of Hex, a topological game
discussed in Chapter 8.)

In Piet Hein’s version, called Tac Tix in English-speaking coun-
tries and Bulo in Denmark, the counters are arranged in square for-
mation as shown in Figure 96. Players alternately take counters, but
they may be removed from any horizontal or vertical row. They must
always be adjoining counters with no gaps between them. For exam-
ple, if the first player took the two middle counters in the top row, his
opponent could not take the remaining counters in one move.

Tac Tix must be played in reverse form (the player who takes
the last counter loses) because of a simple strategy that renders the
normal game trivial. On squares with an odd number of counters
on each side the first player wins by taking the center counter and
then playing symmetrically opposite his opponent. On squares with
an even number of counters on each side the second player wins
by playing symmetrically from the outset. No comparable strategy
is known for playing the reverse game, although it is not difficult
to show that on a 3 × 3 board the first player can win by taking
the center counter or a corner counter, or all of a central row or
column.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 96. Piet Hein’s game of Tac Tix.

The clever principle behind Tac Tix, that of intersecting sets
of counters, has been applied by Piet Hein to many other two-
and three-dimensional configurations. The game can be played,
for example, on triangular and hexagonal boards, or by placing the
counters on the vertices and intersections of a pentagram or hex-
agram. Intersections of closed curves may also be used; here all
counters lying on the same curve are regarded as being in the same
“row.” The square form, however, combines the simplest configu-
ration with maximum strategic complexity. It is difficult enough to
analyze even in the elementary 4 × 4 form, and of course as the
squares increase in size the game’s complexity rapidly accelerates.

A superficial analysis of the game suggests that symmetry play
might ensure a win for the second player in a 4 × 4 game, with only a
trivial modification on his last move. Unfortunately, there are many
situations in which symmetry play will not work. For example, con-
sider the following typical game in which the second player adopts
a symmetry strategy.

First Player Second Player

1. 5–6 11–12
2. 1 16
3. 4 13
4. 3–7 (wins)
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Figure 97. Two problems of Tac Tix.

In this example, the second player’s initial move is a fatal one.
After his opponent responds as indicated, the second player cannot
force a win even if he departs from symmetry on all his succeeding
moves.

The game is much more complex than it first appears. In fact,
it is not yet known whether the first or second player can force a
win even on a 4 × 4 board from which the four corner pieces have
been removed. As an introduction to the game, try solving the two
Tac Tix problems (devised by Piet Hein) pictured in Figure 97. On
each board you are to find a move that ensures a win. Perhaps some
industrious reader can answer the more difficult question: Who has
a win on the 4 × 4 board, the first or second player?

ADDENDUM

Seville Chapman, director of the physics division of the Cornell
Aeronautical Laboratory, Inc., at Cornell University, sent me a wiring
diagram for a well-thought-out portable Nim machine that he built
in 1957. It weighs 34 ounces, using three multideck rotary switches
to handle three rows of 4 to 10 counters each. By taking the first
move, the machine can always win. There is a rather pretty way to
prove this. If we record the three rows in the matrix form previously
described, it is clear that each row must have a 1 in either the 8 or
4 column, but not in both. (The two spaces cannot be empty, for
then the number of counters in the row would be less than four, and
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they cannot both contain a 1 for then the number of counters would
be more than 10.) There are only two ways that these three 1’s (one
for each row) can be arranged in the two columns: all three in one
column, or two in one column and one in the other. In both cases,
one column must total an odd number, making the initial posi-
tion unsafe and thus guaranteeing a win for the machine if it plays
first.

The following readers sent detailed analyses of the 4 × 4 Tac Tix
game: Theodore Katsanis, Ralph Hinrichs, William Hall and C. D.
Coltharp, Paul Darby, D. R. Horner, Alan McCoy, P. L. Rothenberg
and A. A. Marks, Robert Caswell, Ralph Queen, Herman Gerber, Joe
Greene, and Richard Dudley. No simple strategy was discovered, but
there no longer is any doubt that the second player can always win
on this board as well as on the 4 × 4 field with missing corner coun-
ters. It has been conjectured that on any square or rectangular board
with at least one odd side, the first player can win by taking an entire
center row on his first move, and that on fields with even sides, the
second player has the win. These conjectures are, however, not yet
established by proofs.

As things now stand, the ideal board for expert Tac-Ticians who
have mastered the 4 × 4 seems to be the 6 × 6. It is small enough to
keep the game from being long and tiresome, yet complex enough
to make for an exciting, unpredictable game.

ANSWERS

The first Tac Tix problem can be won in several different ways: for
example, take 9–10–11–12 or 4–8–12–16. The second problem is won
by taking 9 or 10.

AFTERWORD, 1988

Nim belongs to a large class of what are called Nim-like or take-
away games in which two players alternately remove counters from
a specified set, according to specified rules. In standard play, the
person taking the last counter wins. In reverse play, the last to take
a counter loses. The classic pioneering paper on such games is “The
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G-Values of Various Games,” by Richard Guy and C. A. B. Smith in
Proceedings of the Cambridge Philosophical Society 52 (July 1956):
514–526. The most extensive coverage of Nim-like games – scores
of new and novel games are analyzed – is the four-volume Winning
Ways by Elwyn Berlekamp, John Conway, and Richard Guy. Many
of my later columns in Scientific American introduced Nim-like
games, but I have limited my references in this chapter to traditional
Nim.

Piet Hein’s variant – I called it Tac Tix, but it later came to be
known as Nimbi – has been examined by a number of computer
programs without any general strategy emerging. The game need
not, of course, be played with square patterns. They can be rect-
angular, triangular, hexagonal, or any other shape. In Denmark, in
1967, Piet Hein marketed a version played with an initial pattern of
twelve counters in the form of an equilateral triangle from which
the three corner counters have been removed. Aviezri Fraenkel and
Hans Herda were able to prove that the second player can force a
win in both standard and reverse play. They reported these results
in “Never Rush to Be First in Playing Nimbi,” Mathematics Maga-
zine 53 (January 1980): 21–26.

POSTSCRIPT

There is now a vast literature on what are called Nim-like, take-
away, or disjunctive games. Such games involve two players who
take turns removing a counter, a cell, a line of a graph, or any other
one of a finite set of defined objects. In standard play the last per-
son to take away wins. In reverse or misère play, the last person to
take loses. Usually, though not in the case of classic Nim, the reverse
game is much more difficult to analyze.

The late graph theorist Frank Harary (he died in 2005) divided
such games into what he called achievement and avoidance games.
He published dozens of papers on original Nim-like games. Hope-
fully these papers, along with unpublished studies of such games,
will someday be gathered into a book.

Many examples of interesting Nim-like games are discussed in
books in this series to follow. See especially Chapter 16 of my
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Book 6; Chapter 14 of Book 10; Chapter 14 of Book 12; and Chapter
8 of Book 13.
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CHAPTER SIXTEEN

Left or Right?

the recent “gay and wonderful discovery” (as Robert Oppenheimer
called it) that fundamental particles of physics have a left and right
“handedness” opens new continents of thought. Do all the funda-
mental particles in the universe have the same handedness? Will
nature’s ambidexterity someday be restored by the discovery that
some galaxies are composed of antimatter – matter made up of par-
ticles that “go the other way,” as Alice described the objects in her
looking glass? Perhaps we can better understand these speculations
if we approach them in a playful spirit.

Mirror reflections are so much a part of daily life that we feel we
understand them thoroughly. Most people are nonetheless at a loss
for words when they are asked: “Why does a mirror reverse left and
right and not up and down?” The question is made more confusing
by the fact that it is easy to construct mirrors that do not reverse left
and right at all. Plato in his Timaeus and Lucretius in On the Nature
of Things describe one such mirror, made by bending a rectangle of
polished metal into the slightly concave form shown in the bottom
left illustration of Figure 98. If you look into such a mirror, you will
see your face as others see it. The reflection of a page of type may
similarly be read without difficulty.

An even simpler way to make a mirror that does not reverse
images is to place two mirrors, preferably without frames, at right
angles to each other as shown in the bottom right illustration Fig-
ure 98. If you rotate this mirror (as well as the concave mirror)
through 90 degrees, what happens to the image of your face? It turns
upside down.

A symmetrical structure is one that remains unchanged when
it is reflected in an ordinary mirror. It can be superposed on its

177



178 Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi

Figure 98. An ordinary mirror and its image (top) and two mirrors whose images
are not reversed (bottom left and right). (Artist: Irving Geis.)
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mirror image, whereas asymmetric structures cannot. The twin
forms of all asymmetric objects are often distinguished by calling
one “right” and the other “left.” No amount of inspection or mea-
surement of one will disclose a property not possessed by the other,
yet the two are quite different. This sorely puzzled Immanuel Kant.
“What can more resemble my hand,” he wrote, “and be in all points
more like, than its image in the looking glass? And yet I cannot put
such a hand as I see in the glass in the place of its original.”

This curious duality is found in structures with any number of
dimensions, including those with more than three. A segment of
a straight line, for example, is symmetrical along its one dimen-
sion; but if we consider a long segment followed by a short one,
the pattern is asymmetric. Mirrored by a point on the linear dimen-
sion it becomes a short segment followed by a long one. If we think
of printed words as symbols ordered in one dimension, then most
words are asymmetric, though there are palindromic words like
“radar” and “deified” which read the same both ways. There are
even palindromic sentences. “Draw pupil’s lip upward”; “A man, a
plan, a canal – Panama!”; “Egad! A base tone denotes a bad age”;
and Adam’s first remark, “Madam, I’m Adam” (to which Eve appro-
priately replied, “Eve”). Poets occasionally make use of palindromic
sound sequences. A good example is Robert Browning’s well-known
lyric “Meeting at Night” in which the rhyme scheme of abccba in
each stanza was designed to suggest the movement of sea waves in
the poem.

Melodies may similarly be regarded as tones ordered along the
single dimension of time. During the fifteenth century, it was fash-
ionable to construct palindromic canons in which the imitating
melody was the other melody backward. Many composers (includ-
ing Haydn, Bach, Beethoven, Hindemith, and Schönberg) have used
the device for contrapuntal effects. Most melodies, however, grate
on the ear in retrograde form.

Many amusing experiments in musical reflection can be per-
formed with a tape recorder. Piano music played backward sounds
like organ music because each tone begins faintly and swells in vol-
ume. Particularly weird effects may be obtained by playing music
backward inside an echo chamber while recording it on another
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Figure 99. The Chinese yin-yang symbol. (Artist: Irving Geis.)

tape. When the second tape is reversed, the notes regain their origi-
nal order but the echoes precede the sounds.

Another type of musical reflection is produced by turning a
player-piano roll around so that it plays forward but with high and
low notes reversed – the inverted music a pianist would produce
if he played in the normal manner on a looking-glass piano. The
melody becomes unrecognizable, and there is an unexpected trans-
position of minor and major keys. This device was also used in
Renaissance canons and in the counterpoint of later composers.
The classic example is in Bach’s Die Kunst der Fuge, in which the
twelfth and thirteenth fugues may be inverted. Mozart once wrote a
canon with a second melody that was the first one both backward
and upside down, so that two players could read the same notes
from opposite sides of the sheet!

Turning our attention to two-dimensional structures, we see that
a configuration such as the Christian cross is symmetrical, whereas
the yin-yang symbol, an ancient Chinese religious symbol (see Fig-
ure 99), is not. The dark and light areas, called Yin and Yang, symbol-
ize all the fundamental dualities, including left-right and its com-
binatorial basis in even and odd numbers. The monad’s pleasing
asymmetry makes singularly appropriate the fact that it was two
Chinese physicists (one of them named Yang!) who received the
Nobel Prize in 1957 for their theoretical work that led to the over-
throw of parity. Unlike music, all asymmetrical designs and pictures
can be “flopped” (to use the graphic-arts term for “reflected”) with-
out losing esthetic value. In fact, Rembrandt once made a flopped
etching of his famous Descent from the Cross. It has been suggested



Left or Right? 181

that left-to-right reading habits may have a subtle influence on a
Westerner’s reaction to a reflected picture, but if so, the influence
seems to be slight.

Because most printed words form asymmetric patterns, reflec-
tions of printed matter are usually unreadable, but not always. If
you look at a mirror reflection of the words “choice quality” on
the side of a Camel-cigarette package, holding the pack so that
its top points to your right, you will be startled by what you see.
“Quality” is unreadable, but “choice” is entirely unchanged! The
reason of course is that “choice,” when printed in capital letters,
has an axis of symmetry and is therefore superposable on its mirror
image by turning it upside down. Other words, like “tomato” and
“timothy,” are asymmetric when printed horizontally, but acquire
an axis of symmetry when printed vertically.

When we consider familiar structures of three dimensions, we
find that they are a pleasing mixture of symmetry and asymme-
try. Most living forms are symmetrical in their outward appearance,
with such notable exceptions as spiral shells, the pincers of the fid-
dler crab, the crossed bills of the crossbill, and the unilateral eyes
of flatfish. Even behavior patterns are sometimes asymmetric; con-
sider, for example, the counterclockwise gyrations of bats swarm-
ing out of Carlsbad Caverns. Most human-made objects are likewise
symmetrical, though some that seem to be so prove to be asymmet-
ric when inspected more closely – for instance, scissors, Moebius
strips, hexaflexagons, and simple overhand knots. The two knots in
Figure 100 have identical topological properties, yet one cannot be
deformed into the other. Dice also have two distinct forms. There
are two ways of placing spots on a die’s faces so that the spots on
opposite sides always total seven; one way is a mirror image of the
other.

As Donald Knuth pointed out in a letter, there are two ways to
place the six spots, two ways to place the three spots, and two ways
to place the two spots. There are, therefore, 2 × 2 × 2 × 2 = 16 dif-
ferent forms of a die.

Since folding your arms is the same as tying them in an overhand
knot, it follows that there are two distinct ways to fold arms, though
we are so conditioned to one method that it is annoyingly difficult to
execute its mirror twin. Fold your arms as you normally do, grasp the



182 Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi

Figure 100. Left- and right-handed Moebius strips (top), overhand knots (mid-
dle), and dice (bottom). (Artist: Irving Geis.)

two ends of a string, unfold your arms, and you will transfer the knot
from your arms to the string. Repeat the experiment with your arms
folded the other way and you get a knot that is a reflection of the first
one. A fascinating (and unsolved) topological problem is to prove
that a pair of mirror-image knots in a closed curve cannot be made
to cancel each other by deforming the curve. No one has succeeded
in doing it, though it is easy to push one knot into the other and form
a square knot, which is symmetrical. If you do this with two knots of
the same handedness, you get an asymmetric granny.

These are not trivial matters. Now that certain particles are
known to be asymmetric in some as-yet-unknown spatial sense,
physical theory will have to account for the fact that when a particle
meets its antiparticle, the two annihilate each other and create
symmetrical energy. Alice looked into her mirror and wondered if
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looking-glass milk was good to drink. For some time it has been
known that such milk would not be digested, because the enzymes
of the body, designed to act on left-handed molecules, could not
cope with right-handed ones. Now it would seem that the situa-
tion might be a good deal worse. The recent parity experiments
strongly suggest that a particle and its antiparticle are really nothing
more than mirror-image forms of the same structure. If this is true,
as most physicists suspect and hope, then any attempt by Alice to
drink looking-glass milk would result in a violent explosion like the
explosion of Dr. Edward Teller when (as dramatically described by
Dr. Teller himself in The New Yorker, December 15, 1956) he shook
hands with Dr. Edward Anti-Teller. It is safe to predict that physicists
will be speculating right and left for a long time to come.

ADDENDUM

The question asked in the second paragraph of this chapter
prompted the following letter from Dr. Robert D. Tschirgi and Dr.
John Langdon Taylor, Jr., both of the department of physiology,
School of Medicine, at the University of California Medical Center
in Los Angeles.

Sirs:
The entertaining and provocative article on symmetry by

Martin Gardner recalled for your readers the tantalizing question:
“Why does a mirror reverse left and right and not up and down?”
Despite the comprehensive descriptions of light paths and optical
principles which are usually marshaled in answer to this query, there
seems to be an even more fundamental basis, which, the writers of
this letter propose, lies primarily within the province of psychophys-
iology.

Humans are superficially and grossly bilaterally symmetrical, but
subjectively and behaviorally they are relatively asymmetrical. The
very fact that we can distinguish our right from our left side implies
an asymmetry of the perceiving system, as noted by Ernst Mach in
1900. We are thus, to a certain extent, an asymmetrical mind dwelling
in a bilaterally symmetrical body, at least with respect to casual visual
inspection of our external form. Here the term symmetry is used in



184 Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi

an informational context, and indicates that the observer can make
no distinction, other then sense, between two or more elements of
his perceptive field. Of course by refining his observations he may
gain information of other dissimilarities, at which time the system
under consideration ceases to be symmetrical.

When we stand before a mirror, we see reflected a superficially
bilaterally symmetrical structure, and we are misled by this appar-
ent symmetry into treating the system as if ourselves and our reflec-
tion were identities rather than enantiomorphs (entities of opposite
“handedness”). Therefore, by psychological projection, we seem to
be able to rotate our body image 180 degrees in three-dimensional
space around a vertical axis and to translate it a distance equal
to twice the distance to the mirror, thereby achieving a coinci-
dence between our body and its reflection. By this process we have
imagined the identical central-nervous-system perceptive machin-
ery which is in ourselves, rather than its enantiomorph, to exist
within our mirror image. We are consequently led to the erroneous
statement that when we move our right hand, our mirror image
moves its left hand. If we, more correctly, imagine our enantiomor-
phic selves within our mirror image, then we realize that its defi-
nition of right and left would be reversed, and when we move our
defined right hand, it moves its defined right hand. We must endow
our reflection not with our own coordinate system, but with a mirror-
image coordinate system. This can easily be illustrated by placing
a paper bag over one hand and re-defining the major body axes
as “head-feet,” “front-back,” and “hand-bag” (instead of right-left).
Now stand before a mirror and observe that when you move head,
mirror image moves head; when you move feet, mirror image moves
feet; when you move hand, mirror image moves hand; and when
you move bag, mirror image moves bag. What has become of right-
left reversal? It has been dispelled, as the chimera it was, by the
simple procedure of making our superficial structure obviously not
bilaterally symmetrical. It is no longer possible to produce essen-
tial coincidence between ourselves and our mirror image by 180-
degree rotation around our vertical axes, any more than around
any other axis, and we recognize the enantiomorphic nature of our
reflection.

To illustrate how the convention of rotation about a vertical axis
imposes the concept of right-left mirror reversal on objects other
than ourselves, consider a map of the U. S. oriented in the custom-
ary manner of North headward and East to the right. To observe the
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mirror image of this map, we invariably rotate the map around its
North-South axis toward a mirror. This habit undoubtedly derives
from the fact that most of our movements designed to inspect our
environment involve rotation about our vertical axis. For example, if
the map were fixed to a wall opposite a mirror, we would observe the
map directly and then rotate ourselves about our vertical axis to view
the map’s reflection. In either case, East will now appear to our left,
but North will remain up. If, however, we rotate the map around its
East-West axis to face the mirror, or look at the reflection of the wall
map by standing on our head, then East remains to our right, but
North becomes footward. It now appears that the mirror has reversed
top and bottom rather than right and left.

The only determined coordinate system is that which the observer
imposes on his environment, and the axes can be adjusted so that
the origin occurs at any point within the observer’s perceptive space.
When we describe the parts of an object relative to one another, we
generally do so by adjusting our coordinate system so that the origin
occurs within the object, and it thereby acquires top-bottom, front-
back, and right-left axes corresponding to those of the observer.
As objects rotate within this system, either through motion of the
object or motion of the coordinate system (i.e., the observer), cer-
tain of the object’s coordinate values will change sign. Rotation of
an object around its vertical axis results in change of sign of right-
left and front-back loci; around its right-left axis results in change
of sign of front-back and top-bottom loci; and around its front-back
axis results in change of sign of top-bottom and right-left loci. How-
ever, since the observer defines the coordinate system, rotation of
the observer does not result in change of sign of the relative parts of
the observer. Thus, if we look at our own reflection while standing
on our head, we still erroneously interpret the mirror as reversing
right and left, because in the process of inverting our body, we have
inverted the coordinate system itself.

After this letter appeared in Scientific American (May 1958), the
magazine received the following note from R. S. Wiener of Stamford,
Connecticut:

Sirs:
After reading the interesting comments of Drs. Tschirgi and Taylor

on the question “Why does a mirror reverse left and right and not up
and down?” I decided to test some of their observations.
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I tacked up a map (actually a chart of the Long Island Sound, West-
ern Section) on the wall opposite the mirror over my dresser. Stand-
ing on my head on the floor in front of the mirror, I realized that
I could not see all of my image. All I could see were two feet. The
one that I recognized to be that which I usually term the left one was
covering the section of the chart around Bridgeport, while the oppo-
site foot was in the vicinity of the East River.

I then tried the experiment with a paper bag over the “left” foot.
The bag was now hovering around Bridgeport. The experiment did
not seem to be accomplishing very much, so I moved the dresser out
of the room, took the mirror off the wall and put it on the floor, lean-
ing it against the wall.

I again took my position on my head in front of the mirror. The
image of the superficially bilaterally symmetric structure on its head
with a bag over one foot was so frightening that I decided to drop the
whole experiment.

POSTSCRIPT

Many years after my article “Is Nature Ambidextrous?” was pub-
lished in 1952, and this chapter ran in Scientific American, I
expanded the material into a book titled The Ambidextrous Universe:
Left, Right, and the Fall of Parity. It was first published in 1964 by
Basic Books, and revised in 1979 by Scribner’s. A further revision,
with new art, was issued by W. H. Freeman in 1990, retitled The
New Ambidextrous Universe: Symmetry and Asymmetry from Mirror
Reflections to Superstrings.

After the Freeman edition went out of print, I updated the book
again in 2005 for a Dover paperback, with a new preface, and a
raft of new footnotes including a long note on the absorption of
superstrings into M-theory. I wanted to change the book’s title to
The Asymmetric Universe, but Dover preferred to keep the old one.
Chapter 3 has several pages explaining exactly why a mirror seems
to reverse left and right but not up and down.
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Götz, Markus, 153
Graham, Ronald, 70, 132
Gray code, 69, 71
Greene, Joe, 174
Greene, John L., 120
Gridgeman, Norman, 55, 56
Grundy, P. M., 71
Guiteras, Joseph J., 120
Guy, Richard, 175

Haggstrom, Warren C., 29
Hall, William, 174
Hamilton, William Rowan, 63
Hamiltonian circuit, 63, 64, 67
Harary, Frank, 45, 175
Hardy, G. H., 115
Hawthorne, Frank, 33
Heath, Royal V., 12
Hein, Piet, 82, 83, 86, 90, 171, 175
Hempel, Carl G., 52
Hempel’s paradox, 52, 54
Heptahexaflexagon, 9
Herda, Hans, 175
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